
Coding Workshop: Empirical Organization1

Kyle Coombs (Columbia)
February 24, 2022

Figure: xkcd

1Adapted from Causal Inference and Research Design by Scott Cunningham
(Baylor), Lucas Husted (Columbia), Len Go� (Columbia)

http://xkcd.com/552/
https://github.com/scunning1975/mixtape

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Welcome

This is a walkthrough for Columbia economics students

Plan for today:
1 How to organize a folder
2 Where to get started with Stata and how to use a .do �le

Stata organization basics (how to use a .do �le)
3 Stata commands everyone should know
4 R work�ow and commands everyone should know
5 Python commands everyone should know

Coombs Coding Workshop

About me

5th year economics PhD

Graduated in 2014 from Macalester College

Lived in Peru for a year working with an Ag nonpro�t and then
making content about artisans for a Fair Trade nonpro�t

RA'd at the Federal Reserve Board in Consumer Finance

I've dabbled in labor, public �nance, political economy and
behavioral

Projects on: charitable giving, discrimination, formal and
informal unemployment insurance, schooling & catholic
scandals

I am a great resource for speci�c project questions � during
o�ce hours (Mon, Wed, Thurs. at 2-3pm and Tues.
10:30-11:30am)

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Goal Today

Teach the toolkit to keep your empirical work�ow organized

Suggest some best practices for writing your code

Give syntax for common data tasks across the di�erent
languages

Most importantly: Give you the toolkit to e�ectively learn how
to debug your own code2 and read code written by other
researchers

Not the goal: Fluency or pro�ciency in any language3

2Or help a colleague/TA/professor more e�ciently help you write your code
3Some days, I barely have that!

Coombs Coding Workshop

Textbooks: Smarter people than me

Helpful Textbooks

1 Cunningham (2021) Causal Inference: The Mixtape (Also, free
version on his website)

2 Huntington-Klein (2022) The E�ect

3 Angrist and Pischke (2009) Mostly Harmless Econometrics
(MHE)

4 Morgan and Winship (2014) Counterfactuals and Causal
Inference (MW)

5 Sweigart (2019) Automate The Boring Stu� With Python

https://www.amazon.com/Causal-Inference-Mixtape-Scott-Cunningham/dp/0300251688
https://mixtape.scunning.com/
https://mixtape.scunning.com/
https://theeffectbook.net/introduction.html
http://www.amazon.com/Mostly-Harmless-Econometrics-Empiricists-Companion/dp/0691120358/
http://www.amazon.com/Counterfactuals-Causal-Inference-Principles-Analytical/dp/1107694167//
http://www.amazon.com/Counterfactuals-Causal-Inference-Principles-Analytical/dp/1107694167//
https://automatetheboringstuff.com/

Non-textbook readings

The help documentation associated with your language (no
really)

Jesse Shapiro's �How to Present an Applied Micro Paper�

Gentzkow and Shapiro's coding practices manual

Ljubica �LJ� Ristovska's language agnostic guide to
programming for economists

Grant McDermott on Version Control using Github
https://raw.githack.com/uo-ec607/lectures/master/

02-git/02-Git.html#1

https://raw.githack.com/uo-ec607/lectures/master/02-git/02-Git.html#1
https://raw.githack.com/uo-ec607/lectures/master/02-git/02-Git.html#1

Helpful for troubleshooting

The help documentation associated with your language (no
really)

All languages https://stackoverflow.com
https://stackexchange.com

Stata-speci�c (all hail Nick Cox) https://www.statalist.
org/forums/forum/general-stata-discussion/general

Cheatsheets! Stata Rstudio Python

Me. Sign up for o�ce hours cause it is the best part of this
job.

https://stackoverflow.com
https://stackexchange.com
https://www.statalist.org/forums/forum/general-stata-discussion/general
https://www.statalist.org/forums/forum/general-stata-discussion/general
https://www.stata.com/bookstore/statacheatsheets.pdf
https://www.rstudio.com/resources/cheatsheets/
https://betterprogramming.pub/10-must-have-python-cheatsheets-2b74e8097bc3?gi=cfdb14820caa
https://calendar.google.com/calendar/u/1/selfsched?sstoken=UUF5d0hzbmlvemxVfGRlZmF1bHR8NDRjMWFiMjA5OTNkNzMwNTVkYzBkYWYyYzc2NmQ5Yjc
https://calendar.google.com/calendar/u/1/selfsched?sstoken=UUF5d0hzbmlvemxVfGRlZmF1bHR8NDRjMWFiMjA5OTNkNzMwNTVkYzBkYWYyYzc2NmQ5Yjc

Learn by Immersion

Just like learning a real language, no amount of talking today
will teach you how to use any program.

You have to need to use it (immersion) to learn it.
Google is your dictionary.
Help �les are your grammar books
A great way to start coding is to see lots of other people's
code and copy what you read

You must learn how to ask the �right� question:

Never: �Importing csv �le into stata not working"
Better: �import csv stata [speci�c error message]"
Better still: �import delimited using csv [speci�c error
message]�
set trace on/o� around a buggy command can help reveal
where the error happens inside the black box

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Work�ow work�ow work�ow
Directories
Organizing Code into Files
Simple Checks

Reducing empirical chaos

�Sad story�

Once upon a time there was a boy who was writing a job
market paper on unemployment insurance during the pandemic

This boy presented the �ndings a half dozen times, spoke to
the media some, and generally thought he had cool results

Several people suggested he look at a handful of other
outcome series and try changing his analysis unit frequency
from monthly to weekly

He also knew that he needed to restrict his sample to reduce
noise

Coombs Coding Workshop

The horror!

But then after making these changes and re-running his code
that took two days, his new sample dropped by 50 percent!

He was, understandably, terri�ed.

The young boy spent a week looking for the �x weeding
through six di�erent versions of the .do and .dta �les with
su�xes like _v1 and _test and _test2 and _�nal_I_swear

and _okay_i_lied

Finally he discovered the phrase:

drop if insample_new==1

instead of

keep if insample_new==1

The boy was very frustrated and decided to work on these
slides while re-running his code.

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Work�ow work�ow work�ow
Directories
Organizing Code into Files
Simple Checks

Cunningham Empirical Work�ow Conjecture

The cause of most of your errors is not due to insu�cient
knowledge of syntax in your chosen programming language

The cause of most of your errors is due to a poorly designed
empirical work�ow

Coombs Coding Workshop

Empirical work�ow

Work�ow is a �xed set of routines you bind yourself to which
when followed identi�es the most common errors

Think of it as your morning routine: alarm goes o�, go to wash
up, make your co�ee/tea, check Twitter, repeat ad in�nitum

Finding the outlier errors is a di�erent task; empirical
work�ows catch typical and common errors created by the
modal data generating processes

Empirical work�ows follow a checklist

Why do we use checklists?

I am going to Kenya in March4 for a wedding and I need a visa

So I have prepared checklist of things that I needed:

Passport, �ight information, travel itinary, hotel bookings,
clear photograph, $51

The empirical checklist is solely referring to the intermediate
step between �getting the data� and �analyzing the data�

It largely focuses on ensuring data quality for the most
common, easiest to identify, situations you'll �nd yourself in

They'll make you a better coauthor

4Yes, this is a �ex. Learn to code and you can also be this cool.

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Work�ow work�ow work�ow
Directories
Organizing Code into Files
Simple Checks

Step 1: Organize your directories

How do coding error �ascos happen?

In part because of four problems related to
1 organized subdirectories
2 automation
3 naming conventions
4 version control

I'll discuss each but I highly recommend that you read
Gentzkow and Shapiro's excellent resource �Code and Data for
the Social Sciences: A Practitioner's Guide� https://web.
stanford.edu/~gentzkow/research/CodeAndData.pdf

Coombs Coding Workshop

https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf
https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf

No correct organization

There is no correct way to organize your directories,

But all competent empiricists have adopted an intentional
philosophy of how to organize their directories

Why? Because you're writing for your future self, and your
future self is lazy, distracted, disinterested and busy5

This will also make you a better coauthor

5Also, my future self is generally not a fan of my past or present self's work.

Directories

The typical applied micro project may have hundreds of �les of
various type and will take years just to �nish not including
time to publication

So simply �nding the �les you need becomes more di�cult if
everything is stored in the same place

When starting a new project, it is best to create something like
the following directories

Subdirectory organization

1) Name the project (�My Project�)

Subdirectory organization

2) A subdirectory for all articles you cite in the paper

Subdirectory organization

3) Data subdirectory containing all datasets, may contain /raw/
and /work/ folders

Subdirectory organization

4) A subdirectory for all do �les and log �les

Subdirectory organization

4) Within Do, you may create:

(a) /build/ � for importing, cleaning, merging, appending

(b) /analyze/ � for analyzing the data

(c) /ado/ � a folder for utility programs/functions that are not
directly part of the work�ow

(d) Housekeeping & Master �les (we'll get to that)

Subdirectory organization

5) All �gures produced by Stata or image �les

Subdirectory organization

6) Project-speci�c heterogeneity (e.g., �Inference�, �Grants�,
�Interview notes�, �Presentations�, �Misc�)

Subdirectory organization

7) All tables generated by Stata (e.g., .tex tables produced by
-estout-)

Subdirectory organization

8) A subdirectory reserved only for writing

The housekeeping �le � automate the boring stu�

Figure: Some argue that you should have no absolute directory paths and
instead de�ne all projects in a �pro�le� �le:
https://julianreif.com/guide/.

https://julianreif.com/guide/

Master File

Figure: Create a master �le to run the project's code from start to �nish

Master Files: Python & R

(a) Master.R

(b) Master.py

Figure: R and Python master �les often call functions instead of �les in a
work�ow. Other folks may have a di�erent organization scheme for these
languages. There are millions of guides and examples online.

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Work�ow work�ow work�ow
Directories
Organizing Code into Files
Simple Checks

Checklist Part 3: Simple data checks

Your data checks should be a few simple, yet non-negotiable,
programming commands and exercises to check for coding
errors

I will mostly use Stata commands for expositional simplicity �
you can and should do the same things in Python, R, Julia,
Matlab, even... SAS

Coombs Coding Workshop

Time

People often think empirical research is about �getting the
data� and �analyzing the data�

They have an �o� to the races� mindset

Just like running a marathon involves far far more time
training than you ever spend running the marathon, doing
empirical research involves far far more time doing tedious,
repetitive tasks

Since you do the tedious tasks repeatedly, they have the most

potential for error which can be catastrophic

How can we minimize these errors through a checklist?

Figure: Image from Wenfei Xu at Columbia GSAPP

Read the codebook

Few like reading the codebook as it is not gripping literature

But the codebook explains how to interpret the data you have
acquired and it is not a step you can skip

Set aside time to study it, and have it in a place where you
can regularly return to it

This goes for the readme that accompanies some datasets,
too.

Look at the data

�Real eyes realize real lies� �Troy Ave via some dude from my
high school

The eyeball is not nearly appreciated enough for its ability to
spot problems

Use browse to just read the spreadsheet with your eyes.

Scroll through the variables and familiarize yourself with what
you've got visually

Plot the sums/averages over time or some other relevant
dimension

800

1000

1200

1400

01jan2001 01apr2001 01jul2001 01oct2001 01jan2002

Date

Low High

Figure: collapse (sum) low high, by(date)

replace high=0 if mi(high)

replace low=0 if mi(low)

twoway (line low high date)

Missing observations

Check the size of your dataset in Stata using count

Check the number of observations per variable in Stata using
summarize

String variables will always report zero observations under
summarize so count if X=="" will work

Use tabulate also because oftentimes missing observations
are recorded with a −9 or some other illogical negative value

Missing time indicators

Panel data can be overwhelming bc looking at each
state/city/�rm/county borders on the impossible

Start with collapse to the national level by year/day/month
and simply browse to see if anything looks strange

What's �strange� look like?
Well wouldn't it be strange if national unemployment rates
were zero in any year?

You can use xtline or twoway, by() to see time series for
panel identi�ers, with or without the subcommand of overlay

Figure: collapse (mean) low high, by(date)

0

500

1000

1500

0

500

1000

1500

01jan200101apr200101jul200101oct200101jan2002

01jan200101apr200101jul200101oct200101jan200201jan200101apr200101jul200101oct200101jan2002

BTX GGL INC

KYL MRNA

Lo
w

 p
ric

e

Date
Graphs by name

Figure: twoway high date, by(names)

0

500

1000

1500

Lo
w

 p
ric

e

01jan2001 01apr2001 01jul2001 01oct2001 01jan2002

Date

BTX
GGL
INC
KYL
MRNA

Figure: xtset name date

xtline high date, overlay

Panel observations are N × T

Say you have 51 state units (50 states plus DC) and 10 years

51× 10 = 510 observations

If you do not have 510 observations, then you have an
unbalanced panel; if you have 510 observations you have a
balanced panel

Check the patterns using xtdescribe and simple counting
tricks

Group counts

If there's uneven counts, visualize them

Don't forget the question

�Exploring the data� is intoxicating to the point of distracting

�All you can do is write the best paper on the question you're
studying� � Mark Hoekstra

Note he didn't say �Write the best paper you're capable of
writing�
He said the best paper

Important therefore to choose the right questions with real
upside

Slow down, think big picture, force yourself to �gure out
exactly what your question is, who is in your sample (and
importantly who won't be) and what time periods you'll pull

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Scripting
Naming conventions

Explain What You Want The Code To Do In Words And
Work Backwards

Recently a student came to OH and with a 100-line Stata .do

�le with nested loops, if statements, and �hardcode�
At �rst the student asked how to debug a few broken locals,
which I could �x
Eventually, I asked, �What do you actually want this to do?�
Answer: �Rename each of the variables and set the negative
values in each equal to missing�
The complex code worked, but it was hard to follow without
extensive documentation
With the goal in mind, we went to the help documentation
shortened 100 lines to �ve crisp lines
Moral: Describe you want in words and work backwards from
that
When all else fails ugly code that works beats beautiful code
that does the wrong thing

Coombs Coding Workshop

Speak clearly

�Be conservative in what you do; be liberal in what you accept from
others.� - Jon Postel

Smart sounding quote about both programming and
relationships

Your future self is time constrained, so explain everything to
her as well as write clear code

Optimally document your programs

But speak your future self's love language so she understands

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Scripting
Naming conventions

Always use scripting programs NOT GUI

Guess what - your future self doesn't even remember making
do �les, tables or �gures, let alone typing into GUI command
line

Therefore throw future you a bone, hold your hand and walk
yourself exactly through everything

Which means you've got to have replicable scripting �les*

* Sure, sometimes use the the command line for messing
around
But then put that messing around in the program

Coombs Coding Workshop

Good text editor

Remember: the goal is to make beautiful programs

Invest in a good text editor which has bundling capabilities
that will integrate with Stata, R or LaTeX

Textmate 2 is great for Mac and in addition to a Stata and R
bundle, it also allows for column editing

PC users tend to love Sublime/VS Code for the same reasons

Stata and Rstudio also come with built-in text editors, which
use slick colors for various types of programming commands

Headers

Setup

Figure: A common way to start a do �le

Assert your truth

All languages have some kind of �assert� syntax, in all three
languages the syntax is assert condition6

Remember how you con�rmed certain things about your in the
checklists? Assert can help you make sure those things stay
true (if tey should)

You assert a test, if the data pass the test, the code advances.
If not, it breaks

For example, make sure data only have adults assert
age>=18 & !missing(age) in Stata or assert
data["age"]>=18 in Python

Other useful in Stata: isid to con�rm you have an ID variable

6R also has stopifnot()

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Scripting
Naming conventions

Commenting Commenting Commenting

All languages let you add comments in various ways:

Stata: ∗, //, /∗ ∗ /
R: %
Python: #

Write informative comments explaining what role a command
serves (don't just restate what a command does)

Bad: mean price //this takes the mean

Good: mean price //record average price to

normalize price

Where possible name functions and objects informatively

Coombs Coding Workshop

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Scripting
Naming conventions

Get Help

What happens if you get a bug you don't understand? Or you
can't remember the syntax for a command or function?

What if you pull some random user-written command o� the
internet?

1 Try things until you're blue in the face
2 Get pre-written help

Good packages/languages have o�cial documentation

Stata: help command, R: ?command, Python: help()

Read help �les to learn how to accomplish a speci�c task

Don't peruse help �les like they're a Pulitzer novel or a
Buzzfeed listicle

Coombs Coding Workshop

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Scripting
Naming conventions

Minimal reproducible example

Many skilled users will ask you to create a minimal
reproducible example of your problem to help debug

That means cutting out project-speci�c stu� to isolate your
bug

It involves a small dataset (or program to generate it) and the
lines of code that fail

dataex is a great Stata tool for building an example

https://stackover�ow.com/questions/5963269/how-to-make-
a-great-r-reproducible-example

https://stackover�ow.com/questions/20109391/how-to-make-
good-reproducible-pandas-examples

Coombs Coding Workshop

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Scripting
Naming conventions

Di�erent elements

Everyone needs a system for naming
1 variables,
2 datasets, and
3 do �les

As these are the three things you repeatedly use, you need to
have a system, even if not mine

Coombs Coding Workshop

Naming conventions for variables

Variables should be readable to a stranger

Say that you want to create the product of two variables.
Name it the two variables with an underscore
gen price_mpg = price * mpg

Otherwise name the variable exactly what it is

gen bmi = weight / (height^2 * 703)

Avoid meaningless words (e.g., lmb2), dating (e.g.,
temp05012020) and numbering (e.g., outcome25) as your
future self will be confused

Naming datasets and do �les

The overarching goal is always to name things so that a
stranger seeing them can know what they are

One day you will be the stranger on your own project! Make it
easy on your future self!

Choose some combination of simplicity and clarity but
whatever you do, be consistent

Avoid numbering datasets unless the numbers correspond to
some meaningful thing, like randomization inference where
each �le is a set of coe�cients and numbered according to
FIPS index

Version control

People swear by git, particularly Gentzkow and Shapiro

I'm slowly learning git and after a long journey have managed
to �gure out how to use it in the command line

Ideally your system allows you to revert to earlier versions
without having ten billion �les with names like
prison_03102019_sc.do, etc.

I do not have time to teach git today, but there are several
useful tutorials

You know how Dropbox/OneDrive/Google Drive, etc. saves
changes as you make them to �les?

E�ectively git lets you group how those changes are saved, so
you can save explicit versions of code that you know worked
and can track exactly which changes made your code break

https://docs.github.com/en/get-started/quickstart/hello-world

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Changing Data Structure: Merging & Appending & Reshaping
Creating and Renaming Variables
Locals/Globals/Looping
Summarizing/Analyzing Data
Figures/Tables

Merge

During a stage of arranging datasets, you will likely merge �
oftentimes a lot

Make sure you count before and after you merge so you can
�gure out what went wrong, if anything

In Stata, make sure you're using the contemporary 1:1, 1:m,

m:17 syntax as many an excellent empiricists have been hurt
by merge syntax errors

Merging is a little clunky in Stata, but R's merge and Python's
pandas.join and pandas.merge are smoother

Check documentation for syntax to keep observations based on
if they are matches, unmatched in either, or some combination
therein

7Avoid m:m at all costs
Coombs Coding Workshop

Appending

Raw data �les are often arranged by day, month, year, state, or
some other group

Analysis usually usually compares observations across these
groups, so you need them in one dataset!

You'll need to append these data �les � append in Stata,
pandas.concat in Python, rbind in R

If there is an issue, it is typically because the variables are
di�erent types across the �les (cannot append a string column
to a numeric variable without forcing it)

Preserve/Restore Note

Until Stata 16, Stata could not have multiple dataframes in
memory and now it is still confusing functionality

People often use preserve, restore and tempfiles as work
arounds

Preserve the data in that moment, do stu� to it, or open a
new one, then restore back to before any of what you just did

During that process you may save a �le as a temp�le (this will
be a local only usable within a session) that is deleted when
you close Stata

R and Python do not have this problem cause they can have
multiple dataframes in memory at once

Long vs. Wide

Data tables/dataframes come in two shapes, �wide� and �long�

�wide� means there is a column for each distinct piece data
point for the unit of analysis

�long� has a column that indexes the data points for a
common series

Switching between these shapes is called �reshaping�

ID INCOME2000 INCOME2001

1 10000 11000
2 10000 11000

ID YEAR INCOME

1 2000 10000
1 2001 11000
2 2000 10000

Table: Wide vs. long data tables

Reshaping

In Stata, do reshape long for wide → long and reshape

wide for long → wide

R and Python have many reshape functions/methods each
with their own time and place

Figure: Inevitably reshaping is one of the hardest parts of data cleaning.

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Changing Data Structure: Merging & Appending & Reshaping
Creating and Renaming Variables
Locals/Globals/Looping
Summarizing/Analyzing Data
Figures/Tables

Creating New Variables

Each language has its own way to generate new variables

Stata:

gen price2 = price�2

egen mean_price = mean(price), by(id) � egen provides
a variety of statistical methods mode, median, mean, etc.

Variable creation in R depends on the �package� you use

Python's Pandas also gives a variety of ways to create variables

Coombs Coding Workshop

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Changing Data Structure: Merging & Appending & Reshaping
Creating and Renaming Variables
Locals/Globals/Looping
Summarizing/Analyzing Data
Figures/Tables

Generating Variables From Aggregated Data

When you run regressions or tabulate or summarize variables, Stata
stores these values and you can reference them later.

Coombs Coding Workshop

Renaming Variables

Sometimes you need a variable to have a more informative
name

Survey data often has names like q1423e for �question 1423
part (e),� which actually refers to price

In Stata, rename

In R, it once again depends on the package

In Python (Pandas), there are a handful of methods

Dates & Times Variables

Almost every language has built-in a way to deal with dates

Stata likes to know if it is working with timestamp, days,
months, quarters, etc. Each integer value is
[seconds/days/months/quarters/etc] since 1/1/1960.

Converting strings into dates: date("1/15/08","MDY",2019)
= 17546

Changing integers into dates: format date %td > 17546 =

15jan2008

Other formats: (%tm, %td, %tc) � you aren't changing the
underlying data, just how it is depicted

Converting between formats:

Daily to Monthly: gen month = mofd(date)

Monthly to Quarterly: gen quarter = qofd(dofm(month))

R packages lubridate and zoo provide similar functionality

Python module datetime provides similar functionality

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Changing Data Structure: Merging & Appending & Reshaping
Creating and Renaming Variables
Locals/Globals/Looping
Summarizing/Analyzing Data
Figures/Tables

Local and Global Variables

�locals� and �globals� are variables that store information for a
function/method

�locals� can only be referenced within the �les or function
where they are speci�ed

�globals� can be used across �les and functions until the
software is closed

These are used in di�erent ways across Stata, R, and Python

In Stata, they can be used to save �code� as a string � not as
useful for this purpose in R/Python

Note: Stata locals are put in `', while globals are preceded by $
� to use a local/global a string, you need to put it in ��8

8This is tedious. I have no intuition for you on it. If locals throw a bug, try
futzying with the quotes.

Coombs Coding Workshop

Stata Locals/Globals

Figure: Can use locals in Stata to write up code.

Automate Iterative Tasks with Loops!

Coding often involves two kinds of loops to repeat things:
1 For loops : loop over a list in series
2 While loops : loop through tasks until some condition is met

The syntax is relatively similar across languages

In Stata you can loop over variables/names with foreach and
loop over numbers in a series with forvalues � the loop
iterates over locals

Loops are discouraged in R and Python:

R: apply, lapply, sapply, etc.
Python: List comprehensions, map, apply

For Loop

Figure: For loops in Stata

While Loop

Figure: While loops in Stata

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Changing Data Structure: Merging & Appending & Reshaping
Creating and Renaming Variables
Locals/Globals/Looping
Summarizing/Analyzing Data
Figures/Tables

Summarizing Data

Coombs Coding Workshop

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Changing Data Structure: Merging & Appending & Reshaping
Creating and Renaming Variables
Locals/Globals/Looping
Summarizing/Analyzing Data
Figures/Tables

Automating Tables and Figures

Goal: make �beautiful tables� that are never edited
post-production

Large �xed costs learning commands like estout or outreg2,
ut zero marginal costs

I use estout because Jann has written an excellent help �le at
http://repec.org/bocode/e/estout/hlp_esttab.html

but many like outreg2 and asdoc

Learn twoway in Stata or ggplot2 in R or seaborn in
Python and make �beautiful pictures� too

Other great resources from Luke Stein:
https://lukestein.github.io/stata-latex-workflows/

The packages stargazer and broom in R do the same,
PyLaTeX comes close

Coombs Coding Workshop

http://repec.org/bocode/e/estout/hlp_esttab.html
https://lukestein.github.io/stata-latex-workflows/

Making Tables

General work�ow:

Run n regressions (store with eststo for estout).
Use command esttab or asdoc to reshape them.
Decide whether you want to print in window or print to �le.

Table made entirely in Stata

est1 est2 est3 est4 est5 est6

smoker -175.4∗∗ -177.0∗∗ -177.1∗∗ -175.4∗∗ -178.4∗∗ -178.2∗∗

(26.83) (27.37) (27.01) (26.83) (26.69) (27.21)
alcohol -21.08 -19.79 -14.68 -19.60 -9.421 3.942

(72.99) (72.91) (72.94) (92.87) (69.74) (90.75)
nprevist 29.60∗∗ 29.75∗∗ 29.79∗∗ 29.60∗∗ 32.12∗∗ 32.09∗∗

(3.58) (3.60) (3.59) (3.59) (4.25) (4.25)
unmarried -187.1∗∗ -189.8∗∗ -199.5∗∗ -187.1∗∗ -199.1∗∗ -206.9∗∗

(27.68) (29.03) (30.64) (27.69) (28.54) (31.30)
educ -1.875 1.828

(5.23) (5.54)
age -2.460 -2.143

(2.31) (2.46)
drinks -0.494 -3.027

(14.78) (16.43)
Trip FE No No No No Yes Yes

Joint F Test 56.09 44.92 45.14 44.93 33.92 23.88
Adj. R-Square 0.09 0.09 0.09 0.09 0.09 0.09
N 3000 3000 3000 3000 3000 3000

Standard errors in parentheses
Dependent Variable is Birthweight.
+ p < 0.10, ∗ p < .05, ∗∗ p < .01

Making Figures (Without That Blue Stata Background)

Stata graphs have annoying blue backgrounds and other bad
presets

There are two ways to get rid of those:

Change your presets/options with twoway in Stata
Use another language � R's ggplot and Python's seaborn
both o�er pros and cons relative to twoway

Within Stata, the main thing to do is to change the graph
region, remove grids, and give speci�c axes

Toss that blue background

Much cleaner

(a) Before (b) After

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Many languages: which to choose?

I've brought up several languages today

Which should you pick?

Two answers:
1 The one that makes the most sense right now
2 Whichever �ts the task at hand

With experience you'll get better at picking up other languages

You'll also learn how to determine which language is the best
for a problem

Stata is often the easiest for the work you do in an economics
class

Python/R are the best for being more employable

Coombs Coding Workshop

Stata: Overview of Use

Stata is essentially a very powerful tool to edit a single
spreadsheet of data at a time.

Syntax explicitly written for analyzing a dataset
Tools for: matrix calculcations, variables in memory, programs9

Pro: Battle-tested for econometrics and has regular quality
control by StataCorp

Con: Not used much outside academia and has awkward
syntax when you want to look at multiple spreadsheets

Mixed bag: user-written programs available for ssc install

Shortcuts:

New .do �le: ctrl-N or cmd-N or (legacy) cmd-9
Data editor: browse or almost never edit

Run (selection) of .do �le: (highlight text) cmd-shift-d

9Use only if you need them

Warnings and Quirks

Familiar problems arise in Stata. Make sure to google error codes
when you get them. Here are some common errors to know:

�no; dataset in memory has changed since last saved�

You need to clear the data you have since Stata will not
overwrite it.

�variable [x] does not uniquely identify observations in the
[master/using] data.�

Your merge is messed up because you have repeated values of
variables when trying to merge.

�not sorted�

For some reason if your data are not sorted you can't use by.
As a solution just always use bysort.

The missing value comparison curse!

BEWARE: missing values will evaluate in Stata as if they are
in�nity. See example.

Other Useful Tools

Stata can be clunky with bigger data. Here are a handful of useful
tools to try:

Gtools by Mauricio Caceres
https://gtools.readthedocs.io/en/latest/index.html
largely replaces egen, called gegen. Has two-step install:

1 ssc install gtools
2 gtools, upgrade

ftools by Sergio Correia
https://github.com/sergiocorreia/ftools - also similar
to egen, but called fegen. fmerge is faster than merge

With regressions that have many �xed e�ects use areg, xtset,
or http://scorreia.com/software/reghdfe/ (by Sergio Correia)

Use strLs to reduce the memory:

recast strL stringvar

gen strL stringvar = �string�

https://gtools.readthedocs.io/en/latest/index.html
https://github.com/sergiocorreia/ftools

R: Overview of use

1 Everything is an object.

2 Everything has a name.

3 You do things using functions.

4 Functions come pre-written in packages (i.e. "libraries"),
although you can � and should � write your own functions
too.

Points 1. and 2. can be summarised as an
https://en.wikipedia.org/wiki/Object-oriented_programming
(OOP) approach.

R vs. Stata

If you're coming from Stata, some additional things:

Multiple objects (e.g. data frames) can exist happily in the
same workspace.

No more keep, preserve, restore hackery.
(https://www.stata.com/new-in-stata/multiple-datasets-in-
memory/ added a �x).
This is a direct consequence of the OOP approach.

Load packages at the start of every new R session. Make
peace with this.

�Base� R comes with tons of useful in-built functions and the
tools to write your own functions.
However, many of R's best data science functions and tools
come from external packages written by users (tidyverse,
data.table, feols) that you include with
install.packages()

R easily and infnitely parallelizes. For free.

You need a https://www.stata.com/statamp/ license to
parallelize and you pay per core!

Check https://stata2r.github.io/ for translation tips!

https://stata2r.github.io/

Python: Overview of use

Python is an incredible useful tool for doing complex data
tasks with data of any size

The main modules (i.e. packages) for data analysis are pandas
and numpy

Again everything is an object

Pro: For bigger data tasks, it is much easier to parallelize tasks

Con: Not all modules are stable and object-oriented
programming makes for clunkier coding

Mixed: Documentation sometimes seems written with data
analysis as an afterthought � makes for frustrating work

In contrast to Stata and R to some extent, you have a lot
more control over how the sausage gets made

Before showing you how to program, how do you download
Python?

There are two approaches: pip installation (command line) and
Anaconda (command line or point and click)

Both allow you to create �environments� of packages that are
self-contained

This can be useful because user-written packages can have
con�icting dependencies that are hard to track

Stata avoids this by being a company

R also has environments you can use with Renv, but it does
not lead with those

Can use Anaconda or pip

https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://packaging.python.org/

Figure: The anaconda home page. Go to environments to install packages

Python packages are called modules and live in repositories on
the internet

Communities of programmers vet these repositories

You have to �rst install them on your computer, then you use
them in a program with the syntax `import moduleX'

With Anaconda Navigator, it is pretty straight-forward to �nd
an install packages

You will mostly use pandas, numpy, requests, zipfile,

matplotlib, seaborn, or geopandas � all of which are in
Anaconda

Other packages may exist somewhere else and require some
work to access

Figure: Install packages

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

Welcome to the Wonderful, Frustrating World of Coding

Covered a lot today, but here are the big takeaways:

Organize your folders, �les, and code to be understandable
�rst, fast second � do not compromise on this
Always have a checklist of tasks before you dive into analysis
Clearly state the problem you want to solve in words and then
work backwards from that to code
Actually look at your data before and after you run code to
make sure your work does what you think it does!
The coding learning curve �attens the more exposure you have
to coding, so just start learning!

Coombs Coding Workshop

Introductions
Work�ow & Checklists
Writing Best Practices

Common Tasks
Language Choice

Conclusion

O�ce Hours

Please come to my o�ce hours in-person or online10:

Where: On Zoom or Room 1006A

When:

Mondays, Wednesdays, Thursdays from 3-4pm
Tuesdays from 10:30-11:30am

What: Coding help, strategize research project, dataset tips

Why: Best way for me to assist you is to see what you're
working with

10I will be in Kenya March 21-March 31, so OH during that period will be
moved around so I can do them remotely at a reasonable hour for both of us

Coombs Coding Workshop

	Introductions
	Workflow & Checklists
	Workflow workflow workflow
	Directories
	Organizing Code into Files
	Simple Checks

	Writing Best Practices
	Scripting
	Naming conventions

	Common Tasks
	Changing Data Structure: Merging & Appending & Reshaping
	Creating and Renaming Variables
	Locals/Globals/Looping
	Summarizing/Analyzing Data
	Figures/Tables

	Language Choice
	Conclusion

