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Person-to-person informal support during unemployment spells

The unemployed rely on informal support
P2P platforms facilitate informal transfers

Researchers can track digital transfers
UI pools risk widely, but can be insufficient
Is UI crowding out informal support?
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Questions

To what extent do people receive cash payments via P2P platforms after job losses?

Small, but targeted

Does UI crowd-out informal insurance via P2P?

Hardly

If so, what are the welfare consequences?

Negligible
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This Project

Categorize earnings, UI, P2P flows, and spending in a new transactions-level data set with
over 2.5M mostly low-wage workers including a large sample of UI recipients (N ≈ 300K )

Track P2P inflows and outflows using within-person event studies around job losses

Assess targeting with heterogeneity analysis by economic and demographic characteristics

Estimate crowd-out by UI with IV-DID using three pandemic natural experiments
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Preview of Findings

P2P inflow increases peak at $30 in month after job loss, and $175 cumulatively

Limited by network income: Users with low-income networks get $125 cumulatively

Targeted: Single mothers get over $500 cumulatively, independent of network income

Crowd-out estimates show P2P inflows fall (at most) $0.04 for a $1 increase in UI
First such estimates in a high-income country outside a lab setting
Negligible welfare consequences, unless informal insurance market is larger than formal market
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Literature

Extent that public insurance crowds out private insurance can change welfare calculation
Chetty and Saez (2010), Baily (1978), Di Tella and MacCulloch (2002), Lin et al. (2014)

Administrative data analysis finds large consumption responses to job loss and UI receipt
with low job finding responses to UI expiration

Farber et al. (2015), Ganong and Noel (2019), Card et al. (2015), and Johnston and Mas (2018)
Pandemic specific: Ganong et al. (2022), Farrell et al. (2020), Coombs et al. (2021)

Low-income economies rely on informal credit and gifts to income pool
Townsend (1995), Kinnan and Townsend (2012), Chiappori et al. (2014), Carranza et al. (2021), Auriol et al.
(2020), Angelucci and De Giorgi (2009)
Mixed crowd-out evidence: Banerjee et al. (2022), Jensen and Richter (2004), Huang and Zhang (2021),
Albarran and Attanasio (2003), Takahashi et al. (2019), Strupat and Klohn (2018), Gerardi and Tsai (2014)

P2P platforms lower transaction costs and facilitate income pooling
Jack and Suri (2014), Balyuk and Williams (2021)
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Transactions Dataset: Earnin

Earnin is a financial-management app that provides pay advances (and other products) to
users that link bank accounts

Largely low-wage, representative of workers affected by widespread economic disruptions
Full dataset includes 0.7 percent of 30M UI recipients in US in July 2020

Surveys in August 2020 and 2021 on demographics, expectations, and preferences
Map of UI coverage CPS vs. Earnin Earnings Synthetic Panel Construction Survey Design
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Categorizing transactions into earnings, UI, P2P, and spending

Use following information to categorize transactions:
1 Bank memo
2 Transaction amount
3 Transaction date
4 Earnin-provided earnings flag and transaction groups

Initially categorize using groups and regular expression searches of memos

Restrict P2P flows based on dollar value, date, or link to earnings, sales, or taxes

Algorithm flags earnings using within- and across-user information Earnings Algorithm

Unemployment spells start with last paycheck before five weeks without any paycheck
UI spells start with first deposit after three weeks without any deposit

Coverage Map Spell Lengths Low UI take-up rate P2P flagging rules
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Analysis Sample

Restrict to an analysis sample:
Keep users with 5+ outflows per month that are continuously employed through June 2019
Treated: Have at least one job loss between July 2019 and September 2020 (130,502 users)
“Not yet treated”: Users with first job loss in September 2021 and no prior UI (4,245 users)

Sample of 134,747 users aggregated at the monthly level

UI analysis: drop seven states with poor UI tracking for 108,181 users – 51,850 receive UI
False Negatives Sample Counts UI receipt by treatment cross tabs Good state coverage Analysis sample: Good state coverage
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P2P flows have increased across platforms
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Notes: P2P inflows and outflows over sample period. Transactions flagged if memos contain P2P-
related regular expressions or transaction group is a P2P platform. Dollar amounts between $5 and
$15,000 and memos not linked to purchases, informal earnings, gig platforms, or stimulus payments.

Summary statistics Provided Groups Series Histogram Net P2P Earnings Net P2P Income Flagging rules Chase QuickPay P2P regexes
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What makes up insurance and P2P?

Notes: Arrows indicate expected changes after job loss. To isolate informal insurance within P2P, I
omit transactions with memos that mention sales, taxes, gig platforms, or other earnings. Results are
robust to including these transactions.
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Assumption: changes in P2P proxy for cash & checks

P2P is replacing cash and checks in informal transactions, accelerated by pandemic
Cash is infeasible to track at a high frequency
Earnin users more likely to use digital payment platforms

For crowd-out, I care about the slope and not the level

P2P lowers fixed costs, expanding informal insurance networks (Jack and Suri, 2014)

Difference in slope for cash/checks vs. P2P is ambiguous due to composition:
P2P networks have more marginal members, suggesting P2P crowded out more
If cash givers have better info about personal finances, P2P may be crowded out less

Jack and Suri (2014) Welfare DCPC instruments DCPC instrument by purpose DCPC vs. Earnin amount shares DCPC vs. Earnin count shares

Coombs (Columbia University) P2P September 25, 2024 16 / 45



What makes up insurance and P2P?

Notes: Arrows indicate expected changes after job loss. To isolate informal insurance within P2P, I
omit transactions with memos that mention sales, taxes, gig platforms, or other earnings. Results are
robust to including these transactions.
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Within-person event study to measure excess P2P

yit = αi + λt + β−6
∑

s≤−6
Ds

it +
∑

s∈[−5,−3]
βsDs

it +
∑

s∈[−1,9]
βsDs

it + β10
∑

s≥10
Ds

it + εit

yit : any outcome
αi : individual fixed effect
λt : month fixed effect
Ds

it : indicator for s time periods relative to i becoming unemployed at s = 0

(1)

Omit two months prior to becoming unemployed due to anticipation effects

For heterogeneity analysis: interact a group indicator Git with Ds
it
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P2P inflows and outflows after unemployment
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Notes: Event studies of P2P inflows and outflows around job loss.

Conditional on prior use By Platform By Year Gardner Spell length NAICS code Number of spells Gig Work Informal P2P Earnings

P2P Replacement Rate Risk Aversion Net P2P Earnings Net P2P Income
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Extensive Margin: Using P2P?
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Notes: Whether user has any P2P inflows or outflows in a month.

By Platform By Platform ($100) Gig Work UI receipt UI receipt ($100) Divisible by $25 Transaction size
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Active users of P2P smooth consumption more
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Notes: Event study coefficients are interacted with indicators for the tercile of median monthly share
of flows linked to P2P more than three months before job loss.

“Active” measurement P2P inflows P2P inflows 3+ months
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Heterogeneity in cumulative support
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Single mothers targeted
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Long-term unemployed targeted
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Users in low-income counties get $0 support
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Social Capital Atlas: Economic connectedness of observed social networks

Social networks are not coterminous with geography in the US

Chetty et al. (2022) use Facebook data to create three measures cross-socioeconomic
status (SES) friendships within social networks, aggregated to the zip code level:

1 Economic Connectedness: Share of high-SES friends among low-SES people
2 Exposure: Share of high-SES people within a network
3 Friending bias: Rate low-SES people befriend1 high-SES people within a group

Decomposition Exposure Map Friending Bias Map Economic Connectedness Event Study Exposure Event Study Friending Bias Event Study

1Chetty et al. (2022) define friending bias as preference for low-SES friendships. I reverse this, so results are
consistent across each measure.
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Economic connectedness associated with smaller gap in support
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coefficients for relative months −1 through 10 interacted with the relevant group shown on the x-axis.
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UI delays are common
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Notes: Weeks to nearest UI spell after first job loss.

UI delays are common especially in 2020

Does P2P fill in the gaps?

Break into cohorts receiving UI 0-1
months or 2-6 months after job loss
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Later UI recipients receive inflows for longer horizon
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Notes: Event studies of inflows and outflows where coefficients are interacted with months to receiving
unemployment insurance.

UI receipt interaction UI subsample split User Replacement Rate State Replacement Rate
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Quasiexogenous variation in UI from pandemic policy changes
Follow Ganong et al. (2022), Coombs et al. (2021) to isolate variation in UI from pandemic:

1 Delayed UI receipt driven by overload of applications in March 2020
2 July 2020 expiration of $600/week in Federal Pandemic Unemployment Compensation
3 June 2021 early withdrawal from federal $300/week in UI benefits by 19 states

Figure: Timeline of legislative changes to UI and stimulus payments during the pandemic

UI Claims March 2020 Treatment Assignment July 2020 Treatment Assignment June 2021 Treatment Assignment
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IV Difference-in-differences to measure crowd-out
Look at one month before and one month after each relevant policy, r captures crowd-out

P2Pit = r ÛIit + λi + λt + ϵit

UIit = βTreatit × (Post Month)it + αi + αt + νit

where Treatit is an indicator for being in the relevant treated group

Figure: Timeline of legislative changes to UI and stimulus payments during the pandemic

UI Claims March 2020 Treatment Assignment July 2020 Treatment Assignment June 2021 Treatment Assignment
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Experiment 1: March Job Loser UI Receipt Cohorts
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Notes: Subset of users that became unemployed in March by month they receive UI. Treated group
are April UI recipients, control group are June UI recipients. IV-DID compares March and May.
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Experiment 2: March job losers, insured vs. Employed through Dec 2020
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Notes: Treatment group are those unemployed in March and insured by June. Control group are those
unemployed after December 2020. Difference-in-differences compares June and August.
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Experiment 3: June 2021 Withdrawal vs. Retain states
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Notes: Sample includes those unemployed and insured on April 30. Difference-in-difference compares
April to August. Inverse probability weighting by quintile of UI start date.
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IV diff-in-diff measures of crowd-out

Table: Crowd-out of P2P Inflows by UI during various pandemic policy events

Method OLS IV
Policy Change March Delays July Expiration June Withdrawal March Delays July Expiration June Withdrawal

(1) (2) (3) (4) (5) (6)
UI Inflows 0.003 0.004∗∗∗ -0.01∗ −1.4 × 10−5 0.008 -0.04∗

(0.004) (0.002) (0.006) (0.005) (0.006) (0.02)

Standard-Errors User State User State
Lower bound × $100 in UI -0.47284 0.09223 -2.3191 -1.0953 -0.40023 -8.6962
Observations 34,508 31,746 28,546 34,508 31,746 28,546
R2 0.73776 0.75915 0.71917 0.73775 0.75912 0.71886
F-test (1st stage), UI Inflows 27,825.4 7,683.9 5,083.0

User and Month fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Instrumental variable difference-in-difference estimates of crowd-out of P2P Inflows by unemployment insurance (UI) using different
plausibly exogenous changes to UI benefits during the pandemic.
* p < 0.1, ** p < 0.05, *** p < 0.01

Conditional on P2P Use Logged Results Extensive Margin Poisson Regression Single Mothers Per Capita Income Economic Connectedness
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Sufficient statistics welfare framework (Chetty and Saez, 2010)
Workers have ex ante unknown ability n distributed F (n) and utility u(c) − h(z/n)

Employed: earn z and pay tax τ and private contract τp
Unemployed: receive public and private benefits b and bp
Crowd-out of bp by b denoted r = −dbp/db

Work if and only if n > n∗ → e = 1 − F (n∗) work, ε1−e,b is unemployment elasticity

Government chooses b to maximize welfare, yielding the welfare money metric

G(b) =

(1 − r)



u′(cu) − u′(ce)
u′(ce)︸ ︷︷ ︸

Marginal utility gap

− ε1−e,b
e︸ ︷︷ ︸

Moral hazard

× 1 + bp/b
1 − r︸ ︷︷ ︸

Crowd-out



= (1 − r)
[(ce

cu

)γ

− 1−ε1−e,b
e × 1 + bp/b

1 − r

]
under CRRA

Derivation With networks
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Unemployed: receive public and private benefits b and bp
Crowd-out of bp by b denoted r = −dbp/db

Work if and only if n > n∗ → e = 1 − F (n∗) work, ε1−e,b is unemployment elasticity

Government chooses b to maximize welfare, yielding the welfare money metric

G(b) = (1 − r)

 u′(cu) − u′(ce)
u′(ce)︸ ︷︷ ︸

Marginal utility gap

− ε1−e,b
e︸ ︷︷ ︸

Moral hazard

× 1 + bp/b
1 − r︸ ︷︷ ︸

Crowd-out



= (1 − r)
[(ce

cu

)γ

− 1−ε1−e,b
e × 1 + bp/b

1 − r

]
under CRRA

Derivation With networks
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Marginal utility gap

− ε1−e,b
e︸ ︷︷ ︸
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× 1 + bp/b
1 − r︸ ︷︷ ︸
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Small crowd-out estimates have negligible welfare consequences
Crowd-out estimates: r = −dbp/db ∈ [−0.008, 0.04]

“Size of informal insurance” is ratio of average monthly “excess P2P” and UI inflows
bp/b = 0.06 before pandemic or 0.01 during pandemic

Pandemic welfare reaches zero if bp/b = 1.12 with r = 0.04

Context ε e r bp/b Standard With crowd-out
Pandemic .07 .85 -.008 .01 .10 .10
Pandemic .07 .85 .04 .01 .10 .09

Pre-pandemic .5 .95 -.008 .06 -.34 -.36
Pre-Pandemic .5 .95 .04 .06 -.34 -.37

Table: Money metric welfare effects of UI with and without crowd-out. Elasticities from Ganong et al.
(2022). Employment share from Ansell and Mullins (2021) and CPS. Consumption change (8%) taken
from Ganong and Noel (2019) and CRRA γ = 2 from Chetty (2006).

Excess P2P calculation Excess P2P share Raw P2P share SIPP informal share
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Conclusion

People receive a modest amount of informal support via P2P after a job loss

Informal support targets based on perceived need, somewhat limited by network income

Small crowd-out implies UI can raise welfare by pooling risk across networks without
reducing targeted within-network support

Empirical justification for policymakers to “ignore” crowd-out when setting benefit levels
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Thank you!

Questions?

Comments?

Compliments?
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Synthetic Panel Coverage

Users not uniquely identified, but flagged by 16 week-varying and 16 fixed “tags”
Week-varying: employer zip code, employer NAICS code
Fixed: Jan 2020 primary job earnings and first/last transaction dates

Use three specific fixed tags to assign “proxy” IDs:
Date and time signed up for Earnin
Gender as predicted by user’s first name
Confidence in that gender prediction

Sum to proxy ID-month level and assume each cell is a single person
Back
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CPS vs. Earnin
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Notes: Comparing average weekly earnings in CPS to Earnin.
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Take-up rate low Back
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Notes: Figure (a) shows share of users receiving UI within two months of the end of their first
unemployment spell by year of job loss and length of spell. Figure (b) shows the share of users that
were unemployed within two months of their first UI spell by year and spell length. UI take-up rate
was 77 percent from 1989 to 2012 Auray et al. (2019).
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Defining earnings and UI

Earnin provides a series of “verified” earnings transaction amounts for active users

Match series on transaction amounts and backfill other transactions with matched memos

Further flag memos considered earnings 90% of the time acros users

Flag any memos mentioning “Payroll” or “Salary”

Transactions in one of the “Payroll” groups that occur at least twice, every two weeks,
and with a median weekly total between $500 and $5,000

Back
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Length of unemployment and UI spells
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Notes: Lengths of unemployment and insurance spells.
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Private insurance with fixed cost
There is some private insurance bp that comes at a hassle cost k

There is some public insurance b without a fixed cost

Workers maximize by choosing effort e less some effort cost C(e)

max
e

eu(z − τ − τP) + u(b + bp) − C(e) − k ⇒ e(b, k)

max
e

eu(z − τ) + u(b) − C(e) ⇒ e∗(b)

A worker chooses private insurance if expected utility is higher after hassle cost k

Threshold b∗
p and db∗

p/db increase in k, but inframarginal crowd-out is the same

The risk averse are more likely to take bp at all levels of k
Back
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Model of digital payments & income pooling by Jack and Suri (2014)
Consider an economy of three people and S states with endowments xi s.t. ∑i xi = 1

With transfers, Pareto optimization implies welfare W = 3u
(

1
3

)
A fixed cost k per transfer implies three ex-post welfare outcomes:

W (k) = 3u
(1 − 2k

3

)
︸ ︷︷ ︸

2 transfers

W (k, x1) = u(x1) + 2u
(1 − x1 − k

2

)
︸ ︷︷ ︸

1 transfer

W (x) =
3∑

i=1
u(xi)︸ ︷︷ ︸

Autarky

1 As k ↓, shocks better smoothed
2 More (smaller) transfers occur
3 Middle income network members ↑

⇒ Cash payments should shift to P2P
⇒ Informal insurance ↑ with P2P
⇒ Public insurance crowds out transfers

Back
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Payment instrument shares by P2P
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Atlanta Diary of Consumer Payment Choice.
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Payment instrument shares over time
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Notes: Shares of person-to-person payments by platform over years. Raw data from FRB Atlanta
Diary of Consumer Payment Choice.
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P2P flows in Earnin vs. Diary of Consumer Payment Choice
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Notes: User share of cumulative non-cash dollar flows linked to P2P platforms in the months of
October 2019 (a) and 2020 (b) the Diary of Consumer Payment Choice (DCPC) vs. Earnin database.
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P2P use in Earnin vs. Diary of Consumer Payment Choice
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Notes: User share of non-cash transactions linked to P2P platforms in the months of October 2019
(a) and 2020 (b) the Diary of Consumer Payment Choice (DCPC) vs. Earnin database.
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Earnin UI coverage: Lower where states do not direct deposit UI
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Unemployment insurance state misses
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Unemployment Coverage Cross-tabs in Sample

Table: Overall sample selection

No UI Had UI Total
Has job loss 929,193 344,268 1,273,461

(72.97) (27.03) (100.00)
Continuously employed 445,949 58,887 504,836

(88.34) (11.66) (100.00)
Total 1,375,142 403,155 1,778,297

(77.33) (22.67) (100.00)

Two-way tab of users that are unemployed or insured from January 2019 through October 2021.

Back
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Gender by Family composition (analysis sample)
Table: Overall sample selection

Male Female Total
Single 28,570 23,809 52,379

(54.54) (45.46) (100.00)
Married, no kids 1,798 1,885 3,683

(48.82) (51.18) (100.00)
Single Parent 5,164 14,974 20,138

(25.64) (74.36) (100.00)
Married, kids 4,203 4,105 8,308

(50.59) (49.41) (100.00)
Total 39,735 44,773 84,508

(47.02) (52.98) (100.00)

Two-way tab of gender and family composition of users in analysis sample.

Back
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Gender by Family composition
Table: Overall sample selection

Male Female Total
Single 259,109 208,490 467,599

(55.41) (44.59) (100.00)
Married, no kids 19,400 20,842 40,242

(48.21) (51.79) (100.00)
Single Parent 51,552 136,742 188,294

(27.38) (72.62) (100.00)
Married, kids 47,692 44,103 91,795

(51.95) (48.05) (100.00)
Total 377,753 410,177 787,930

(47.94) (52.06) (100.00)

Two-way tab of gender and family composition.

Back
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Analysis sample unemployment by UI

Table: Analysis sample UI receipt

No UI after first job loss UI after first job loss Total
Job loss after 9/2020 4,174 71 4,245

(98.33) (1.67) (100.00)
Job loss 7/2019 to 9/2020 77,080 53,422 130,502

(59.06) (40.94) (100.00)
Total 81,254 53,493 134,747

(60.30) (39.70) (100.00)

Two-way tab of users that are unemployed in analysis sample.

Back
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UI Coverage Cross-tabs

Table: UI state quality by tracked UI

No UI Had UI Total
Good UI tracking state 708,805 328,135 1,036,940

(68.36) (31.64) (100.00)
Bad UI tracking state 220,388 16,133 236,521

(93.18) (6.82) (100.00)
Total 929,193 344,268 1,273,461

(72.97) (27.03) (100.00)

Cross tab of users with UI after unemployment by good states.

Back
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Analysis sample UI coverage cross-tabs

Table: UI state quality by tracked UI analysis sample

No UI after first job loss UI after first job loss Total
Good UI tracking state 56,331 51,850 108,181

(52.07) (47.93) (100.00)
Bad UI tracking state 24,923 1,643 26,566

(93.82) (6.18) (100.00)
Total 81,254 53,493 134,747

(60.30) (39.70) (100.00)

Cross tab of users with UI after unemployment by good states in analysis sample.

Back
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Major P2P platforms
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Notes: Inflow and outflow event studies for memos mentioning selected large P2P platforms. “Pur-
chase” memos removed.

Main Event Study
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Difference in behavior by year?
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Notes: Event study of inflows and outflows from any P2P platform less purchaes memos. Coefficients
on time dummies interacted with year of unemployment start plotted.

Main Event Study
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Used Major P2P platforms
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Notes: Event studies for having any monthly inflows and outflows on selected large P2P platforms.
“Purchase” memos removed.
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At least $100 on Major P2P platforms
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Notes: Event studies for having at least $100 of monthly inflows and outflows on selected large P2P
platforms. “Purchase” memos removed.
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Used P2P by UI status
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Notes: Event studies for having monthly inflows and outflows interacted with whether user received
UI after unemployment or not. “Purchase” memos removed.
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At least $100 of P2P by UI status
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Notes: Event studies for having at least $100 of monthly inflows and outflows interacted with whether
user received UI after unemployment or not. “Purchase” memos removed.
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Conditional on prior use
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Notes: Event studies of inflows and outflows of any P2P platform around an unemployment event
conditional on P2P use at least six months prior.

Main Event Study
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The risk averse get transfers early
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Notes: Inflow and outflow event study coefficients interacted with whether above or below median
risk aversion. “Purchase” memos removed.
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Survey Design
Conducted surveys in August 2020 (N ≈ 26K ) and 2021 (N ≈ 12K )

Total income, UI received and spending in prior month and expected in next month
Savings in bank account at time of survey
Past/current/reservation wage
Dates last worked, expect to work again, etc.
Part-time/full-time status of work
Race, ethnicity, gender, age, marital status, children, education,
Risk preferences: Telescoping question of preference between 50-50 gamble for $0 or $M
vs. sure payment of $240 (Falk et al., 2016)
Discount preferences: Money in three months preferred to $40 in a week
Qualitative risk and discount preferences questions: 1-10 scale

Sample frame: 500K users with active accounts in March 2020, 50% UI recipients and
50% non-recipients

Compensated first 2000 with $5 Amazon gift card
Main Event Study Transactions data
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Risk preferences (quantitative)

Main Event Study Transactions data Risk Aversion Event Study
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Risk preferences (qualitative)

Main Event Study Transactions data Risk Aversion Event Study
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Discount preferences (quantitative)

Main Event Study Transactions data Risk Aversion Event Study
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Two-Stage Difference-in-differences Gardner (2022)
Gardner (2022) introduced a two-stage DiD imputation approach to manage staggered
timing and heterogeneous treatment effects

Estimate difference in differences/event study in two stages
1 Residualize outcomes month and user fixed effects estimates from the

untreated/not-yet-treated observations
2 Regress residualized outcome on the treatment indicator(s)

yit(0) = λi + λt + νit

ỹit = yit − µ̂t − µ̂t

ỹit =
∑

s∈[−4,−2]
βsDs

it +
∑

s∈[0,9]
βsDs

it + β−5
∑

s≤−5
Dt

s + β10
∑

s≥10
Ds

it + εit

The continuously employed until September 2021 is a “not yet treated” group
Main Event Study
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Gardner Two-Stage Event Study
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Notes: Gardner Two-Stage DiD corrects for “bad comparisons.” Standard errors bootstrapped user-
level clusters.

Main Event Study
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P2P flows by whether unemployment spell lasted longer than six weeks
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Notes: Event studies subset by whether spell is longer than six weeks or not.
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P2P inflows by gender, parentage, relationship
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Notes: P2P inflows and outflows by gender and family composition as determined by
survey response, observed receipt of CTC, or stimulus payment amount.
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P2P flows by per capita income of county
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Notes: P2P response to living in an above or below median per capita household
income county as measured by the American Community Survey 2019 5-year
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P2P inflows by economic connectedness of zip code
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Notes: P2P response to living in an above or below median per capita household income county as
measured by economic connectedness in Social Capital Atlas (Chetty et al., 2022).
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P2P inflows by high-SES exposure of zip code
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Notes: P2P response to living in an above or below median per capita household income county as
measured by high-SES expsoure in Social Capital Atlas (Chetty et al., 2022).
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P2P inflows by friending bias of zip code
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Notes: P2P response to living in an above or below median per capita household income county as
measured by high-SES friending bias in Social Capital Atlas (Chetty et al., 2022).
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P2P replacement rate Main Event Study Income Loss
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Notes: Event studies of inflows of P2P normalized by pre-job loss earnings.
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How many spells of unemployment?
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Notes: Event study of P2P inflows and outflows time dummies interacted with num-
ber of unemployment spells.
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Gig employment behavior
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Notes: Within-person event study of gig work earnings and the probability that gig work earnings
exceed $100 around month of job loss. Standard error’s clustered at the user-level.

Main Event Study Extensive Margin

Coombs (Columbia University) P2P September 25, 2024 42 / 111



Informal P2P Earnings
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Notes: Within-person event study of informal earnings on P2P platforms.
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Conditional on getting UI
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Notes: Event studies inflows and outflows from P2P platform around unemployment. Coefficients on
relative time dummies interacted with UI receipt indicators plotted. Purchase memos removed.
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Within UI receipt groups
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Notes: Event studies subset by whether the user had UI after unemployment or not.

Time to UI Main Event Study
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P2P replacement rate by UI receipt
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Notes: Event studies of inflows of P2P normalized by pre-job loss earnings by UI receipt.
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UI replacement rate tercile
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Notes: Within-person event study coefficients are interacted with tercile of user pre-job loss earnings
replacement rate. Sample restricted to users with a single job loss and and excluding users in states
that do not have easily identifiable UI deposit memos. Standard error’s clustered at the user-level.
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State-level replacement rate from Ganong et al. (2020)

−$20

$0

$20

$40

$60

−5 0 5
Months since last paycheck

2019 2020

Inflows from P2P platforms ($)

(a) Below Median

−$20

$0

$20

$40

−5 0 5
Months since last paycheck

2019 2020

Inflows from P2P platforms ($)

(b) Above Median

Notes: Figures shows event study of P2P inflows with coefficients interacted with: (1) whether above
or below the median replacement rate for a state and (2) the year of job loss. Median pre-job loss
earnings replacement by Ganong et al. (2020). Standard errors clustered at user-level.
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Selected NAICS groups
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Notes: P2P inflow event study coefficients interacted with NAICS category of former job.
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Transaction counts and size
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Notes: Event study of whether the user had inflows, outflows, or either transactions from a P2P
platform. The sample is restricted to users with a single unemployment spell. coefficients Standard
error’s clustered at the user-level.
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Transactions divisible by $25
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Notes: Event studies of the probability of a transaction divisible by $25 from P2P inflows, outflows,
or gig earnings.

Back

Coombs (Columbia University) P2P September 25, 2024 51 / 111



Defining “active” users of P2P

To quantify tercile of P2P activity I do the following:
Calculate monthly share of cumulative flows linked to P2P platforms
Take the median of these monthly shares for months 3+ months prior to job loss
Calculate the tercile of these median monthly shares

Interact event study coefficients with each tercile
Back
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“Active” users receive more P2P and smooth consumption more
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Notes: Coefficients are interacted with indicators for the tercile of median monthly share of flows
linked to P2P more than three months before job loss.
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Using P2P at least 3+ months prior
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Notes: Coefficients are interacted with indicator for using P2P more than three months before job
loss.
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Heterogeneity in cumulative support as a share of earnings
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Notes: Total P2P rep. rate after job loss calculated as sum of event study coefficients for relative
months −1 to 10 interacted with group on x-axis. Family composition imputed from stimulus & CTC.
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Users in Majority-Minority zip codes get more support
Baseline Majority Ethnicity Majority Race

Baseline Hispanic Non−Hispanic Black Other White None
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Notes: Total excess P2P after job loss calculated as sum of event study coefficients for relative months
−1 to 10 interacted with group on x-axis. Race & ethnicity shares by zip code.
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Users in Majority-Minority zip codes get more support
Baseline Majority Ethnicity Majority Race

Baseline Hispanic Non−Hispanic Black Other White None
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Total average excess P2P after job loss as a share of pre−job loss earnings

Notes: Total P2P rep. rate after job loss calculated as sum of event study coefficients for relative
months −1 to 10 interacted with group on x-axis. Race & ethnicity shares by zip code.
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Economic Connectedness Decomposition
Formally, economic connectedness of individual i to above-median-SES individuals H:

IECH,i = fH,i
wH

=
∑
g∈G

[
φi ,g × fH,i ,g

wH

]
=
∑
g∈G

[
φi ,g × wH,g

wH
× fH,i ,g

wH,g

]

=
∑
g∈G

[
φi ,g × ExposureH,g ×

(
1 − Friending biasH,i ,g

)]
where

ExposureH,g ≡ wH,g
wH

Friending biasH,i ,g ≡ 1 − fH,i ,g
wH,g

where wH represents high-SES population share, fH,i is the high-SES friend share, and φi ,g is
friend share within each zip code g Back
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Social Capital Atlas: Exposure by county and selected zip codes

(a) County (b) Zip codes in LA

Notes: Social Capital Atlas measure of Exposure to above-median SES individuals by (a) county and
(b) zip code within Los Angeles County. Sources: Chetty et al. (2022)
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Social Capital Atlas: Friending bias by county and selected zip codes

(a) County (b) Zip codes in LA

Notes: Social Capital Atlas measure of Friending bias to above-median SES individuals by (a) county
and (b) zip code within Los Angeles County. Sources: Chetty et al. (2022)
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Economic Connectedness replacement rates
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Notes: Cumulative excess P2P replacement rate after job loss calculated as the sum of event study
coefficients for relative months −1 through 10 interacted with the relevant group shown on the x-axis.
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Parenthood by Economic Connectedness
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Notes: Total excess P2P inflows after job loss calculated as sum of event study coefficients for relative
months −1 to 10 interacted with group on x-axis. Family composition imputed from stimulus & CTC.
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Parenthood by Economic Connectedness
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Parenthood by County Per Capita Income
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Notes: Total excess P2P inflows after job loss calculated as sum of event study coefficients for relative
months −1 to 10 interacted with group on x-axis. Family composition imputed from stimulus & CTC.

Back

Coombs (Columbia University) P2P September 25, 2024 64 / 111



Parenthood by County Per Capita Income
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Notes: Total P2P rep. rate after job loss calculated as sum of event study coefficients for relative
months −1 to 10 interacted with group on x-axis. Family composition imputed from stimulus & CTC.
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Simple Welfare Model from Chetty and Saez (2010)

Workers have ex ante unknown ability (or essentialness) n distributed F (n)

Employed earn z and pay taxes τ and a private contract τp

During unemployment, workers receive b and bp

Work if and only if n > n∗, and let e = 1 − F (n∗)

u(z − τ − τp) − u(b + bp) = h(z/n∗)

n∗(b), and thus e(b), is a function of b
Back
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Deriving Welfare Money Metric

max
b

W (e) = eu(z − τ − τp) + (1 − e)u(zL + b + bp) − Φ(e)

First disutility of working, Φ(e) is increasing and convex in e

Φ(e) =
∫ ∞

0
h(0)dF (n)+

∫ ∞

F −1(1−e)
(h(z/n) − h(0)) dF (n) =

∫ ∞

F −1(1−e)
h(z/n)dF (n)+eh(0)

Second let bp(b), so choosing b is the same as choosing B = b + bp
Differentiating wrt B yields

dW
dB = (1 − e)u′(ce)

[u′(cu) − u′(ce)
u′(ce) − ε1−e,B

e

]
By chain rule:
dW
dB = dW

db − dW
db

db
db

p
= (1 − r)dW

db → ε1−e,B = −(b + bp)
de
dB

1 − e =
(

1 − bp
b

)
ε1−e,b
1 − r

Back
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Sufficient statistics welfare framework with k networks
Workers have ex ante unknown ability n distributed F k(n) and utility u(c) − h(z/n)

Employed: earn zk and pay tax τ k and private contract τ k
p

Unemployed: receive public and private benefits bk and bk
p

Crowd-out of bk
p by bk denoted r k = −dbk

p /dbk

Work if and only if n > n∗k → ek = 1 − Fk(n∗k) work, εk
1−e,b is unemployment elasticity

Government chooses bk to maximize welfare, yielding the welfare money metric

G(b) =
∑

k
pk(1 − rk)

u′(ck
u ) − u′(ck

e )
u′(ck

e )︸ ︷︷ ︸
Marginal utility gap

−
εk

1−e,b
ek︸ ︷︷ ︸

Moral hazard

×
1 + bk

p /bk

1 − rk︸ ︷︷ ︸
Crowd-out


=
∑

k
pk(1 − rk)

(ck
e

ck
u

)γk

− 1−
εk

1−e,b
ek ×

1 + bk
p /bk

1 − rk

 under CRRA
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Deriving Welfare Continued

Plugging in expressions for dW /db and ε1−e,B in terms of b and bp yields

dW
db = (1 − e)(1 − r)u′(ce)

[u′(cu) − u′(ce)
u′(ce) − ε1−e,b

e
1 + bp/b

1 − r

]
normalized into a money metric G(b) by dividing by the dW /dz , the marginal welfare of an
additional dollar of wages

G(b) = dW
db

1
1 − e

/
dW /dz 1

e

= (1 − r)
[u′(cu) − u′(ce)

u′(cu) − ε1−e,b
e

1 + bp/b
1 − r

]
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Excess P2P as a share of total insurance
During unemployment what share of insurance made up by P2P?

Impute excess P2P as the person-unemployment period fixed effect from the regression:

P2Pit = λt + λi × After job lossit + λi × Before job lossit + ϵit

where After job loss ≡ 1 (t + 1 ≥ Last Paycheck Month)
Excess P2P = λi × After job lossit

These fixed effects measure average excess monthly P2P inflows after job loss

Calculate excess P2P as a share of excess P2P plus average UI inflows:

Excess P2P share = Excess P2P
Excess P2P + UI

Also calculate the raw total P2P share of total UI and P2P after job loss
Back
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Density of Excess P2P during unemployment
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Notes: Share of P2P and UI inflows made up by P2P during unemployment. The excess share as
calculated as the within user average increase in P2P inflows from a user-unemployment spell fixed
effect. The denominator is average UI inflows in months receiving UI plus the excess P2P inflows.
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Density of Raw P2P during unemployment
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Notes: Share of P2P and UI inflows made up by P2P during unemployment. The numerator is the
total P2P inflows after job loss and the denominator is total UI inflows and P2P inflows after job loss.
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Density of P2P from Survey of Income and Program Participation
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Notes: Share of insurance made by gifts from friends where formal insurance is just public UI (a) or
formal insurance includes workers compensation, union UI, and company insurance.
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Measuring P2P inflows and outflows

Financial services company Plaid categorizes transactions into 104 groups including
Venmo, PayPal, Chase QuickPay with Zelle, and Square Cash

Categories inconsistently applied over sample period

Add regular expression searches of memos for P2P platforms

Remove memos mentioning sales, bank fees, Earnin, gig platforms, or taxes

Include transactions between $5 and $15,000 (untaxed maximum for family gifts)
Categorizing transactions P2P flows timeline
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Monthly Flows by Select Platforms
All memos Non-purchase memos

Mean Median SD Mean Median SD
Outflow Venmo 58.33 0.00 253.99 58.12 0.00 253.42
Inflow Venmo 43.45 0.00 235.93 43.40 0.00 235.80
Outflow Paypal 32.11 0.00 265.08 30.40 0.00 261.63
Inflow Paypal 15.38 0.00 337.61 14.99 0.00 336.59
Outflow Zelle 191.38 0.00 605.46 186.95 0.00 602.68
Inflow Zelle 158.51 0.00 592.28 154.53 0.00 585.97
Outflow Cashapp 165.35 0.00 498.38 117.99 0.00 421.73
Inflow Cashapp 75.05 0.00 337.34 63.93 0.00 312.22
Outflow P2P Other 31.24 0.00 250.50 24.26 0.00 229.91
Inflow P2P Other 25.74 0.00 247.50 21.56 0.00 235.64
Outflow Any P2P 479.95 150.00 931.80 419.28 90.00 889.51
Inflow Any P2P 328.13 40.50 913.92 307.65 24.62 895.88
Observations 12299359 12299359

Table: Sum stats of outflows and inflows of various platforms. P2P flows timeline
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Monthly earnings by P2P net sender
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Notes: Histogram of monthly earnings by whether the user is a net sender or receiver of P2P in the
relevant period. Figure (a) is monthly average earnings by whether user is an average sender or receive.
Figure (b) is March earnings by whether the user is a net sender or receive of P2P.
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Monthly income by P2P net sender
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Notes: Histogram of monthly income by whether the user is a net sender or receiver of P2P in the
relevant period. Figure (a) is monthly average income by whether user is an average sender or receive.
Figure (b) is March income by whether the user is a net sender or receive of P2P.
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Plaid Timeline
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Notes: P2P inflows and outflow of transactions betweene $5 and $15,000, not linked
to purchases, gig platforms, or stimlus payments over time.
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Histograms of P2P flows
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Notes: Histograms of user-monthly P2P inflows and outflows as well as transaction
counts in the analysis sample.
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Benchmarking Against Plaid Categories

Plaid is a fintech company that aims to categorize transactions using natural language
processing

They specifically flag: Cashapp (as Square Cash), PayPal, Venmo, and Chase Pay

I want to use more categories than these five, but can use these to benchmark my reular
expression flagging

I also have checked event studies of these categories, which broadly follow the same
patterns (not shown today)

P2P flows timeline
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Histograms of P2P counts
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Notes: Histograms of user-monthly P2P inflows and outflows as well as transaction
counts in the analysis sample.
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Chase Quickpay with Zelle disapears
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Notes: Isolating common categories associated with memos containing “ZELLE” around early 2021.
The drop off in [Transfer, Third Party, Chase QuickPay], suggests that Plaid abandoned the category
in late 2021.
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Flagging P2P platforms with regular expressions
Use regular expressions to flag bank memos like these:
Venmo

VENMO*MICHAEL BEST NEW YORK CITY NY DATE XXXXXXXXXXXXXX
VENMO DEPOSIT
POS DEP - VENMO*BRUNO FURTADO NEW YORK NYUS - CARD ENDING IN XXXX

Zelle
ZELLE TRANSFER CONFXXX : RICARDO POMMER MUÑOZ
XXXXXXXX - ZELLE: EDDIE SHORE
GAZELLE BUY & GO

PayPal
PAYPAL TO ANDREW OLENSKI FROM KYLE COOMBS2

PAYPAL PURCHDATE XXXXX
Xoom, Square Cash, Apple Pay, ChasePay, Chime, Facebook, GooglePay, CashApp
A general “P2P” memo catchall

Categorizing transactions P2P flows timeline
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Conditional DiD

Table: Crowd-out of P2P Inflows by UI during various pandemic policy events conditional on using service

Method OLS IV
Policy Change March Delays July Expiration June Withdrawal March Delays July Expiration June Withdrawal

(1) (2) (3) (4) (5) (6)
UI Inflows 0.01∗∗ 0.02∗∗∗ 0.07∗∗∗ 0.003 0.08∗∗∗ 0.08

(0.006) (0.007) (0.02) (0.009) (0.02) (0.05)

Standard-Errors User State User State
Lower bound × $100 in UI -0.01514 0.42752 3.2769 -1.5723 3.7655 -2.3216
Observations 16,552 16,708 16,110 16,552 16,708 16,110
R2 0.00022 0.00161 0.00218 8.63 × 10−5 -0.01733 0.00212

Month fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Difference-in-difference estimates of crowd-out of P2P Inflows on the extensive margin by unemployment insurance (UI) using different
plausibly exogenous changes to UI benefits during the pandemic conditional on receiving P2P Inflows in both months.
* p < 0.1, ** p < 0.05, *** p < 0.01

IV DID
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Logged Outcomes IV DiD

Table: Crowd-out of P2P Inflows by UI during various pandemic policy events

Method OLS IV
Policy Change March Delays July Expiration June Withdrawal March Delays July Expiration June Withdrawal

(1) (2) (3) (4) (5) (6)
UI Inflows -0.02∗∗∗ -0.06∗∗ 0.002 -0.03∗∗∗ -0.11∗∗∗ -0.02

(0.006) (0.03) (0.007) (0.007) (0.04) (0.01)

Standard-Errors User State User State
Lower bound × $100 in UI 0.86031 0.57783 0.94048 -4.5224 -18.244 -5.4330
Observations 34,508 31,746 28,546 34,508 31,746 28,546
R2 0.79127 0.81560 0.80150 0.79124 0.81557 0.80125
F-test (1st stage), UI Inflows 96,543.0 45,168.0 4,680.8

User and Month fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Instrumental variable difference-in-difference estimates of crowd-out of logged P2P Inflows by logged unemployment insurance (UI)
using different plausibly exogenous changes to UI benefits during the pandemic.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Poisson Results

Table: Crowd-out of P2P Inflows by UI during various pandemic policy events

Policy Change March Delays July Expiration June Withdrawal
(1) (2) (3)

UI Inflows 1.1 × 10−5 −1.2 × 10−6 −1.8 × 10−5∗∗

(1.3 × 10−5) (1.4 × 10−6) (8.7 × 10−6)

Standard-Errors User State
Lower bound × $100 in UI -0.00147 -0.00040 -0.00349
Observations 24,672 23,420 22,142

User and Month fixed effects ✓ ✓ ✓

Poisson estimates of crowd-out of P2P Inflows on the extensive margin by unem-
ployment insurance (UI) using different plausibly exogenous changes to UI benefits
during the pandemic.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Extensive Margin of P2P Use

Table: Extensive margin of P2P Inflows by UI during various pandemic policy events

Policy Change March Delays July Expiration June Withdrawal
(1) (2) (3)

Post x Treat -0.04∗∗∗ 0.02∗∗∗ 0.006
(0.01) (0.007) (0.010)

Standard-Errors User State
Observations 34,508 31,746 28,546
R2 0.76878 0.78695 0.77308

User and Month fixed effects ✓ ✓ ✓

Difference-in-difference estimates of crowd-out of P2P Inflows on the exten-
sive margin by unemployment insurance (UI) using different plausibly exogenous
changes to UI benefits during the pandemic.
* p < 0.1, ** p < 0.05, *** p < 0.01

IV DID
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Crowd-out among single mothers

Table: Crowd-out of P2P Inflows by UI during various pandemic policy events subset for single mothers

Method OLS IV
Policy Change March Delays July Expiration June Withdrawal March Delays July Expiration June Withdrawal

(1) (2) (3) (4) (5) (6)
UI Inflows 0.01 -0.01 -0.05 0.01 -0.008 -0.005

(0.02) (0.02) (0.03) (0.04) (0.03) (0.08)

Lower bound × $100 in UI -2.0634 -5.3705 -11.056 -6.4292 -6.8373 -16.996
Observations 890 976 874 890 976 874
R2 0.69884 0.83473 0.70411 0.69881 0.83472 0.70303
F-test (1st stage), UI Inflows 384.38 1,124.6 149.34

User and Month fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Instrumental variable difference-in-difference estimates of crowd-out of P2P Inflows by unemployment insurance (UI) using different
plausibly exogenous changes to UI benefits during the pandemic. Subset for single mothers.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Crowd-out by county per capita income

Table: Crowd-out of P2P Inflows by UI during various pandemic policy events subset by county income

Method OLS IV
Policy Change March Delays July Expiration June Withdrawal March Delays July Expiration June Withdrawal

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Median PCI Below Above Below Above Below Above Below Above Below Above Below Above
UI Inflows 0.01 0.003 -0.005∗∗∗ 0.005 0.04∗ -0.02∗∗∗ 0.02 -0.0005 0.01 0.01 0.05 -0.06∗∗

(0.01) (0.005) (0.001) (0.005) (0.02) (0.007) (0.01) (0.007) (0.01) (0.007) (0.04) (0.03)

Standard-Errors User State User State
Lower bound × $100 in UI -1.0778 -0.61822 -0.79409 -0.47382 -0.04936 -3.2486 -1.0643 -1.5240 -1.1679 -0.33115 -3.0794 -11.416
Observations 5,328 29,170 4,774 26,962 3,880 24,650 5,328 29,170 4,774 26,962 3,880 24,650
R2 0.69718 0.73365 0.79048 0.74886 0.78852 0.71054 0.69713 0.73363 0.78726 0.74884 0.78850 0.71007
F-test (1st stage), UI Inflows 4,764.8 23,051.2 253.06 30,543.1 578.11 4,388.6

User and Month fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Instrumental variable difference-in-difference estimates of crowd-out of P2P Inflows by unemployment insurance (UI) using different plausibly exogenous changes
to UI benefits during the pandemic. Odd columns are users in counties below median per capita income and even columns are users in counties above median
per capita income.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Crowd-out by economic connectedness

Table: Crowd-out of P2P Inflows by UI during various pandemic policy events subset by zip code economic connectedness

Method OLS IV
Policy Change March Delays July Expiration June Withdrawal March Delays July Expiration June Withdrawal

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Median EC Below Above Below Above Below Above Below Above Below Above Below Above
UI Inflows 0.001 0.007 -0.004∗∗∗ 0.007 -0.01 -0.005 0.009 -0.006 0.003 0.02∗ -0.04 -0.05∗

(0.006) (0.007) (0.002) (0.008) (0.01) (0.01) (0.008) (0.01) (0.009) (0.01) (0.03) (0.03)

Lower bound × $100 in UI -1.0276 -0.58516 -0.73841 -0.83940 -3.8987 -2.6662 -0.78436 -2.7197 -1.4980 -0.04394 -10.018 -10.622
Observations 15,578 18,130 15,152 15,808 13,600 14,204 15,578 18,130 15,152 15,808 13,600 14,204
R2 0.71735 0.73948 0.74432 0.76086 0.73220 0.71034 0.71728 0.73930 0.74415 0.76078 0.73203 0.70965
F-test (1st stage), UI Inflows 13,922.2 13,228.4 2,019.6 17,238.9 2,788.4 2,008.7

User and Month fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Instrumental variable difference-in-difference estimates of crowd-out of P2P Inflows by unemployment insurance (UI) using different plausibly exogenous changes
to UI benefits during the pandemic. Odd columns are users in counties below median economic connectedness and even columns are users in counties above
median economic connectedness.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Removing MPC

Some P2P platforms are used to buy goods and services

Use regular expressions to remove these types of transactions
Ex. Flag “POINT OF SALE” or “PURCHASE” or “DEBIT CARD WITHDRAWAL”

Also, flag memos mentioning “EARNIN” as these represent Earnin app wage advances

Tried removing payments that were not multiples of five as well – results remain largely
unchanged

Back
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Unprecedented spike in UI claims in Spring 2020

Source: U.S. Employment and Training Administration fred.stlouisfed.org
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Early Pandemic Delays Treatment and Control

yit = γÛI + λi + λt + ϵit

UI = β(April UI Receipt) × (Month=May 2020) + λi + λt + νit

Treatment group: March 2020 job losers that receive UI in April
Control group: March 2020 job losers that receive UI in June
Pre-period: March 2020
Post-Period: May 2020

Timeline IV Diff-in-diff March Cohorts
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July 2020 expiration of $600

yit = γÛI + λi + λt + ϵit

UI = β(UI receipt by June 19) × (Month=August 2020) + λi + λt + νit

Treatment group: March 2020 job losers that receive UI by June
Control group: Those unemployed after December 2020
Pre-period: June 2020
Post-Period: August 2020

Timeline IV Diff-in-diff July Expiration
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June 2021 early withdrawal from expanded UI benefits by 19 states

yit = γÛI + λi + λt + ϵit

UI = β(Withdrawal State) × (Month=August 2021) + λi + λt + νit

Treatment group: Unemployed and insured workers in withdrawal states
Control group: Unemployed and insured workers in retaining states
Pre-period: April 2021 (announcement), Post-Period: August 2021

Timeline IV Diff-in-diff June Withdrawal
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March Job Loser UI Receipt Cohorts
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Notes: Subset of users that became unemployed at the end of March by month they receive UI.
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Unemployed and Insured vs. Unemployed after June 2020
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June 2021 Withdrawal Cohorts
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Notes: Event studies of the June/July UI expiration. Sample includes those unemployed and insured
on April 30, the omitted data. Inverse probability weighting by quintile of UI start date.
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Removing “sale” memos & non-modulo 5 amounts
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Notes: Distribution of monthly amounts do not change much after removing purchase memos or those
transaction amounts not divisible by 5. Densities are conditional on non-zero in a month.
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Mock dataset example: Measuring P2P inflows and outflows

Amount Date Memo Plaid Category
-$93.13 2/1/2020 Jimmy John’s Order Purchase, Restaurant
$25.00 1/19/2020 Zelle transfer from Kyle Third Party, Chase QuickPay
$0.05 1/1/2020 Zelle transfer Third Party, Chase QuickPay
$25.00 1/1/2020 Zelle transfer for Babysitting Third Party, Chase QuickPay
$25.00 3/19/2021 Zelle transfer from Kyle Uncategorized
$25.00 1/5/2020 PayPal for Etsy Sale 9999 Third Party, PayPal
-$25.00 3/17/2020 Venmo Third Party, Venmo
$15,000 3/13/2020 CashApp Transfer Third Party, Square Cash

Table: Mock transactions dataset showing how memos, Plaid categories, amounts of money and dates
were used to flag P2P transactions.
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P2P platforms and their regexes
Platform Regular Expression
Venmo VENMO—VENM
PayPal PAYPAL
Zelle ZELLE

Square Cash App SQC*CASH, SQUARE CASH, CASH APP
Apple Pay APPLE PAY
Chase Pay CHASEPAY, CHASE.*QUICK.*PAY

P2P P2P, PERSON.*TO.*PERSON,PERSON.*2.*PERSON, P.*TO.*P
Google Pay GOOGLE.*PAY
Facebook PAY.FB.COM, FACEBOOK

Moneysend MONEY.*SEND
Cashout CASHOU?T?

Table: Types of P2P Platforms and their regexes. Back
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Benchmarking P2P by year
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Notes: Share of P2P and UI inflows made up by P2P during unemployment.
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Religious Adherents Back
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Notes: By whether state’s replacement rate is above or below the median per Ganong-Noel calcula-
tions.
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Zip Code Has A Majority Race Back
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Notes: Event study of inflows and outflows of any P2P platform around an unemployment event by
whether zip code has a majority race per the 2010 Census counts. Data courtesy of IPUMS.
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