Low Income Support

Kyle Coombs adapted from Sammy Young, Emmanuel Saez, Wojciech Kopczuk, and more

Vassar College

September 30, 2025

Motivation for Government Transfers

Inequality ⇒ motivates redistribution

Government Transfers direct government payments to individuals (often very low-income)

 A progressive tax system can achieve a lot of redistribution but changing tax rates cannot increase incomes at the very bottom (Caveat: refundable tax credits)

Transfers

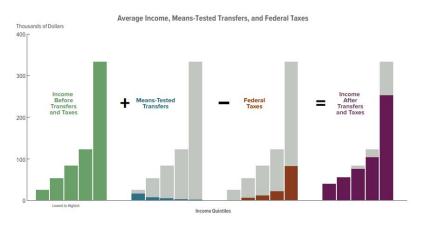


Figure: From taxes to federal government transfers (Source: Dr. Sammy Young (ASU))

Learning Goals

- Contrast low-income transfer programs
- Learn to calculate implied marginal tax rate from the EITC and evaluate labor supply consequences
- Analyze the labor supply incentives associated with welfare programs
- Consider efficiency trade-offs of ordeal mechanisms and in-kind transfers to improve targeting

How should we provide support to low-income folks? Should we?

Redistribution Can Lower Inequality

- Government can reduce inequality through redistribution
 - Progressive taxation
 - Transfer programs
 - Public services

Redistribution Can Lower Inequality

- Government can reduce inequality through redistribution
 - Progressive taxation
 - Transfer programs
 - Public services
- But redistribution involves tradeoffs:
 - May reduce incentives to work and invest
 - Administrative costs of tax/transfer systems
 - Political feasibility challenges
 - Targeting efficiency getting aid to intended recipients

Redistribution Can Lower Inequality

- Government can reduce inequality through redistribution
 - Progressive taxation
 - Transfer programs
 - Public services
- But redistribution involves tradeoffs:
 - May reduce incentives to work and invest
 - Administrative costs of tax/transfer systems
 - Political feasibility challenges
 - Targeting efficiency getting aid to intended recipients
- Key policy design questions:
 - How much redistribution?
 - How to balance equity and efficiency?
 - What form should transfers take?

Rare exceptions: Pareto optimal policies

- The ideal redistributional policy is a Pareto improvement or Pareto efficient
- These policies are Pareto efficient and effectively "pay for themselves"
- They are RARE in practice
- Examples (Hendren and Sprung-Keyser (2020)):
 - College education (e.g. Florida International University free tuition to high-achieving students, Texas Pell grants)
 - Medicaid expansion to pregnant women and infants
 - Early childhood education
- What do they have in common? Long-run earnings

Rare exceptions: Pareto optimal policies

- The ideal redistributional policy is a Pareto improvement or Pareto efficient
- These policies are Pareto efficient and effectively "pay for themselves"
- They are RARE in practice
- Examples (Hendren and Sprung-Keyser (2020)):
 - College education (e.g. Florida International University free tuition to high-achieving students, Texas Pell grants)
 - Medicaid expansion to pregnant women and infants
 - Early childhood education
- What do they have in common? Long-run earnings ↑
- Policies that boost long-run earnings will pay for themselves through increased tax revenue

Evaluation of Redistribution Policies

- Two key questions for evaluating equity/efficiency tradeoff:
 - How large are the efficiency costs from redistribution?
 - Focus on deadweight loss and behavioral responses to taxation
 - These determine the magnitude of efficiency costs

Evaluation of Redistribution Policies

- Two key questions for evaluating equity/efficiency tradeoff:
 - How large are the efficiency costs from redistribution?
 - Focus on deadweight loss and behavioral responses to taxation
 - These determine the magnitude of efficiency costs
 - How do we value \$1 of income across different people?
 - This is a normative question
 - Depends on values, philosophy, and social preferences
 - No purely objective answer

- Arthur Okun coined "leaky bucket" to describe redistribution:
 - Carrying money from high to low-income has "leaks"

- Arthur Okun coined "leaky bucket" to describe redistribution:
 - Carrying money from high to low-income has "leaks"
- Multiple sources of "leaks":
 - Behavioral distortions from collecting taxes or giving transfers
 - Administrative costs of enabling taxation and transfers

- Arthur Okun coined "leaky bucket" to describe redistribution:
 - Carrying money from high to low-income has "leaks"
- Multiple sources of "leaks":
 - Behavioral distortions from collecting taxes or giving transfers
 - Administrative costs of enabling taxation and transfers
- Consider a transfer of \$1 from high- to low-income individuals

- Arthur Okun coined "leaky bucket" to describe redistribution:
 - Carrying money from high to low-income has "leaks"
- Multiple sources of "leaks":
 - Behavioral distortions from collecting taxes or giving transfers
 - Administrative costs of enabling taxation and transfers
- Consider a transfer of \$1 from high- to low-income individuals
- With no behavioral responses:
 - It costs \$1 to transfer \$1 to low-income individuals

- Arthur Okun coined "leaky bucket" to describe redistribution:
 - Carrying money from high to low-income has "leaks"
- Multiple sources of "leaks":
 - Behavioral distortions from collecting taxes or giving transfers
 - Administrative costs of enabling taxation and transfers
- Consider a transfer of \$1 from high- to low-income individuals
- With no behavioral responses:
 - It costs \$1 to transfer \$1 to low-income individuals
- Potential "leaky bucket" costs:
 - \Uparrow taxes may mean high-income workers \Downarrow work, \Downarrow tax rev by \$0.25
 - Administrative costs (\$0.10 in spending)
 - \bullet Transfers \Downarrow low-income work (income effects), \Downarrow tax rev by \$0.10
 - Total cost: \$1.45 to transfer \$1 to low-income individuals

Social Welfare Function and Redistribution

- Social Welfare Function: measure of total welfare (utility) across all individuals in society
- A simple mathematical representation:

Social Welfare
$$=\sum_{i}\phi(U_{i})=\phi_{i}\cdot U_{i}$$

where:

- *U_i* is the utility of each individual *i*
- ϕ ("Phi") is the SWF, ϕ_i is the social welfare weight for individual i

Social Welfare Function and Redistribution

- Social Welfare Function: measure of total welfare (utility) across all individuals in society
- A simple mathematical representation:

Social Welfare
$$=\sum_{i}\phi(U_{i})=\phi_{i}\cdot U_{i}$$

where:

- *U_i* is the utility of each individual *i*
- ϕ ("Phi") is the SWF, ϕ_i is the social welfare weight for individual i
- Welfare weights (ϕ_i) represent society's value judgment
 - ullet $\phi_i=0$ for wealthiest means their utility irrelevant

Social Welfare Function and Redistribution

- Social Welfare Function: measure of total welfare (utility) across all individuals in society
- A simple mathematical representation:

Social Welfare
$$=\sum_{i}\phi(U_{i})=\phi_{i}\cdot U_{i}$$

where:

- *U_i* is the utility of each individual *i*
- ϕ ("Phi") is the SWF, ϕ_i is the social welfare weight for individual i
- Welfare weights (ϕ_i) represent society's value judgment
 - \bullet $\phi_i = 0$ for wealthiest means their utility irrelevant
- Utilitarian case: $\phi_i = 1$ for all individuals
 - Still favors redistribution due to diminishing marginal utility

Evaluating Redistribution Policies

- Calculate the effects on individuals in each part of the distribution including DWL from taxation and transfers
- Use welfare weights to compute the change in social welfare
- Calculate the social welfare per dollar cost of the policy

Evaluating Redistribution Policies

- Calculate the effects on individuals in each part of the distribution including DWL from taxation and transfers
- 2 Use welfare weights to compute the change in social welfare
- Ocalculate the social welfare per dollar cost of the policy
 - Lower relative social welfare weight on the most wealthy ⇒ more support for redistribution even with a leaky bucket

Evaluating Redistribution Policies

- Calculate the effects on individuals in each part of the distribution including DWL from taxation and transfers
- 2 Use welfare weights to compute the change in social welfare
- Ocalculate the social welfare per dollar cost of the policy
 - Lower relative social welfare weight on the most wealthy ⇒ more support for redistribution even with a leaky bucket

Role of Economics:

- Measuring costs and benefits of policies
- Estimating incidence (who bears the burden)
- Providing a framework for evaluating policies given a set of welfare weights

Economics cannot determine the "right" welfare weights

Key policy design choices

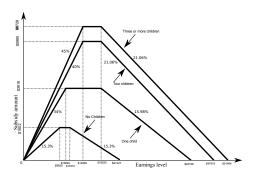
Is the transfer program categorical or means-tested?

- Categorical transfer: Transfer programs restricted by a demographic characteristic, such as single motherhood or disability.
- Means-tested transfer: Transfer programs restricted only by income and asset levels.

Is the transfer program cash or in-kind?

- Cash transfer: Transfer programs that provide cash benefits to recipients.
- In-kind transfer: Transfer programs that deliver goods, such as medical care or housing, to recipients.

Cash transfer programs


- Temporary Aid for Needy Families (\$28B in 2021, approximately 2M recipients in FY2023)
 - available to low income families with children
 - benefits temporary max 5 years over lifetime, no more than 2 years in a row (with exceptions); work requirements
 - partially funded by grants from federal government to states
 - states control the structure of their welfare programs.
 - benefits are means-tested, benefit reduction rate between 50 and 100% (the rate at which benefits decline as income grows)
- Supplemental Security Income for the aged, blind, or disabled (\$67.2B in 10/2022-9/2023) who are not (fully) served by Social Security or DI; 7.5M recipients as of 9/2023

Cash transfer programs

Earned Income Tax Credit (27.0M recipients in 2021; \$66.4B)

- Part of tax system, refundable (\$51.7B refunded in 2019)
- Subsidy increases with earnings initially ("phase-in")
- benefits vary by number of eligible children
- the maximum benefit of \$7,430 in 2023 (couple with 3+ children)
- Benefits phase out at higher incomes:
 - Single parents: No benefits above \$56,838
 - Joint filers: No benefits above \$63,698

EITC Structure and Incentives

Source: CBPP, 2021 Schedule (Single)

Key Features:

- Phase-in: Subsidy ↑
 with income
- Plateau: Max benefit
- Phase-out: Benefits ↓
- Work incentives shift from positive to negative

The slope of a benefit with respect to pre-tax income creates an *implicit marginal tax rate*

$$\label{eq:mplicit} \text{Implicit MTR} = \frac{\Delta \text{Transfer}}{\Delta \text{Pre-tax Income}}$$

$$\mbox{Implicit MTR} = \frac{\Delta \mbox{Transfer}}{\Delta \mbox{Pre-tax Income}}$$

For a single parent with two kids and only labor income (earnings):

• Phase in range:

$$\mbox{Implicit MTR} = \frac{\Delta \mbox{Transfer}}{\Delta \mbox{Pre-tax Income}}$$

- Phase in range:
 - Subsidy \uparrow from \$0 to \$6,604 as earnings \uparrow from \$0 to \$16,510.

$$\mbox{Implicit MTR} = \frac{\Delta \mbox{Transfer}}{\Delta \mbox{Pre-tax Income}}$$

- Phase in range:
 - Subsidy \uparrow from \$0 to \$6,604 as earnings \uparrow from \$0 to \$16,510.
 - Implicit marginal tax rate: $\frac{\Delta \text{EITC}}{\Delta \text{Earnings}} \frac{0-6604}{16510-0} = -0.4$

$$\mbox{Implicit MTR} = \frac{\Delta \mbox{Transfer}}{\Delta \mbox{Pre-tax Income}}$$

- Phase in range:
 - Subsidy \uparrow from \$0 to \$6,604 as earnings \uparrow from \$0 to \$16,510.
 - Implicit marginal tax rate: $\frac{\Delta \text{EITC}}{\Delta \text{Earnings}} \frac{0-6604}{16510-0} = -0.4$
- Plateau range:

$$\mbox{Implicit MTR} = \frac{\Delta \mbox{Transfer}}{\Delta \mbox{Pre-tax Income}}$$

- Phase in range:
 - Subsidy \uparrow from \$0 to \$6,604 as earnings \uparrow from \$0 to \$16,510.
 - Implicit marginal tax rate: $\frac{\Delta \text{EITC}}{\Delta \text{Earnings}} \frac{0-6604}{16510-0} = -0.4$
- Plateau range:
 - Subsidy constant from \$16,510 to \$21,560 in earnings

$$\mbox{Implicit MTR} = \frac{\Delta \mbox{Transfer}}{\Delta \mbox{Pre-tax Income}}$$

- Phase in range:
 - Subsidy \uparrow from \$0 to \$6,604 as earnings \uparrow from \$0 to \$16,510.
 - Implicit marginal tax rate: $\frac{\Delta \text{EITC}}{\Delta \text{Earnings}} \frac{0-6604}{16510-0} = -0.4$
- Plateau range:
 - Subsidy constant from \$16,510 to \$21,560 in earnings
 - Implicit marginal tax rate: $\frac{6604-6604}{21560-16510} = 0$

$$\mbox{Implicit MTR} = \frac{\Delta \mbox{Transfer}}{\Delta \mbox{Pre-tax Income}}$$

- Phase in range:
 - Subsidy \uparrow from \$0 to \$6,604 as earnings \uparrow from \$0 to \$16,510.
 - Implicit marginal tax rate: $\frac{\Delta \text{EITC}}{\Delta \text{Earnings}} \frac{0-6604}{16510-0} = -0.4$
- Plateau range:
 - Subsidy constant from \$16,510 to \$21,560 in earnings
 - Implicit marginal tax rate: $\frac{6604-6604}{21560-16510} = 0$
- Phase out range:

$$\mbox{Implicit MTR} = \frac{\Delta \mbox{Transfer}}{\Delta \mbox{Pre-tax Income}}$$

- Phase in range:
 - Subsidy \uparrow from \$0 to \$6,604 as earnings \uparrow from \$0 to \$16,510.
 - Implicit marginal tax rate: $\frac{\Delta \text{EITC}}{\Delta \text{Earnings}} \frac{0-6604}{16510-0} = -0.4$
- Plateau range:
 - Subsidy constant from \$16,510 to \$21,560 in earnings
 - Implicit marginal tax rate: $\frac{6604-6604}{21560-16510} = 0$
- Phase out range:
 - \bullet Subsidy \Downarrow to \$0 from \$21,560 to \$52,918 in earnings

$$\mbox{Implicit MTR} = \frac{\Delta \mbox{Transfer}}{\Delta \mbox{Pre-tax Income}}$$

- Phase in range:
 - Subsidy \uparrow from \$0 to \$6,604 as earnings \uparrow from \$0 to \$16,510.
 - Implicit marginal tax rate: $\frac{\Delta \text{EITC}}{\Delta \text{Earnings}} \frac{0-6604}{16510-0} = -0.4$
- Plateau range:
 - Subsidy constant from \$16,510 to \$21,560 in earnings
 - Implicit marginal tax rate: $\frac{6604-6604}{21560-16510} = 0$
- Phase out range:
 - \bullet Subsidy \Downarrow to \$0 from \$21,560 to \$52,918 in earnings
 - Implicit marginal tax rate: $\frac{6604-0}{52918-21560} = 0.2106$

Interaction with taxation (and other programs)

- For single parents of two, income \geq \$20.8K¹ taxed (2023)
- Statutory MTR ↑ from 10% to 12% for in EITC range
- Payroll tax (employee's share only): 7.65%

Total MTR = Implicit MTR + Statutory MTR

Income range	Marginal tax rate EITC Tax Payroll Total				Tax liability (at lower limit)

• What is effective income at \$16,510?

¹Standard deduction

- For single parents of two, income \geq \$20.8K¹ taxed (2023)
- Statutory MTR ↑ from 10% to 12% for in EITC range
- Payroll tax (employee's share only): 7.65%

Total MTR = Implicit MTR + Statutory MTR

	l N	/largin	Tax liability		
Income range	EITC	Tax	Payroll	Total	(at lower limit)
\$0 \$16,510					
\$16,510 \$20,800					
\$20,800 \$21,650					
\$21,650 \$37,700					
\$37,700 \$52,918					
\$52,918 \$80,650					
\$80,650					

- What is effective income at \$16,510?
- Is the total MTR strictly progressive/vertically equitable?

¹Standard deduction

- For single parents of two, income \geq \$20.8K¹ taxed (2023)
- Statutory MTR ↑ from 10% to 12% for in EITC range
- Payroll tax (employee's share only): 7.65%

Total MTR = Implicit MTR + Statutory MTR

		N	/largin	Tax liability		
Income	range	EITC	Tax	Payroll	Total	(at lower limit)
\$0	\$16,510	-0.4	0	0.0765	-0.3235	\$0.00
\$16,510	\$20,800					'
\$20,800	\$21,650					
\$21,650	\$37,700					
\$37,700	\$52,918					
\$52,918	\$80,650					
\$80,650						

- What is effective income at \$16,510?
- Is the total MTR strictly progressive/vertically equitable?

¹Standard deduction

- For single parents of two, income \geq \$20.8K¹ taxed (2023)
- Statutory MTR ↑ from 10% to 12% for in EITC range
- Payroll tax (employee's share only): 7.65%

Total MTR = Implicit MTR + Statutory MTR

		N	/largin	Tax liability		
Income	range	EITC	Tax	Payroll	Total	(at lower limit)
\$0	\$16,510	-0.4	0	0.0765	-0.3235	\$0.00
\$16,510	\$20,800	0	0	0.0765	0.0765	-\$5340.98
\$20,800	\$21,650					'
\$21,650	\$37,700					
\$37,700	\$52,918					
\$52,918	\$80,650					
\$80,650						

- What is effective income at \$16,510?
- Is the total MTR strictly progressive/vertically equitable?

¹Standard deduction

- For single parents of two, income \geq \$20.8K¹ taxed (2023)
- Statutory MTR ↑ from 10% to 12% for in EITC range
- Payroll tax (employee's share only): 7.65%

Total MTR = Implicit MTR + Statutory MTR

		N	/ //argin	Tax liability		
Income rang	ge	EITC	Tax	Payroll	Total	(at lower limit)
\$0 \$16	,510	-0.4	0	0.0765	-0.3235	\$0.00
\$16,510 \$20	,800	0	0	0.0765	0.0765	-\$5340.98
\$20,800 \$21	,650	0	0.10	0.0765	0.1765	-\$5012.80
\$21,650 \$37	,700					!
\$37,700 \$52	,918					
\$52,918 \$80	,650					
\$80,650						

- What is effective income at \$16,510?
- Is the total MTR strictly progressive/vertically equitable?

¹Standard deduction

- For single parents of two, income \geq \$20.8K¹ taxed (2023)
- Statutory MTR ↑ from 10% to 12% for in EITC range
- Payroll tax (employee's share only): 7.65%

Total MTR = Implicit MTR + Statutory MTR

		N	/largin	Tax liability		
Income	range	EITC	Tax	Payroll	Total	(at lower limit)
\$0	\$16,510	-0.4	0	0.0765	-0.3235	\$0.00
\$16,510	\$20,800	0	0	0.0765	0.0765	-\$5340.98
\$20,800	\$21,650	0	0.10	0.0765	0.1765	-\$5012.80
\$21,650	\$37,700	0.2106	0.10	0.0765	0.3871	-\$4,433.78
\$37,700	\$52,918					
\$52,918	\$80,650					
\$80,650						

- What is effective income at \$16,510?
- Is the total MTR strictly progressive/vertically equitable?

¹Standard deduction

- For single parents of two, income \geq \$20.8K¹ taxed (2023)
- Statutory MTR ↑ from 10% to 12% for in EITC range
- Payroll tax (employee's share only): 7.65%

 $\mathsf{Total}\ \mathsf{MTR} = \mathsf{Implicit}\ \mathsf{MTR} + \mathsf{Statutory}\ \mathsf{MTR}$

		l N	/largin	Tax liability		
Income	range	EITC	Tax	Payroll	Total	(at lower limit)
\$0	\$16,510	-0.4	0	0.0765	-0.3235	\$0.00
\$16,510	\$20,800	0	0	0.0765	0.0765	-\$5340.98
\$20,800	\$21,650	0	0.10	0.0765	0.1765	-\$5012.80
\$21,650	\$37,700	0.2106	0.10	0.0765	0.3871	-\$4,433.78
\$37,700	\$52,918	0.2106	0.12	0.0765	0.4071	\$1,504.55
\$52,918	\$80,650					!
\$80,650						

- What is effective income at \$16,510?
- Is the total MTR strictly progressive/vertically equitable?

¹Standard deduction

- For single parents of two, income \geq \$20.8K¹ taxed (2023)
- Statutory MTR ↑ from 10% to 12% for in EITC range
- Payroll tax (employee's share only): 7.65%

 $\mathsf{Total}\ \mathsf{MTR} = \mathsf{Implicit}\ \mathsf{MTR} + \mathsf{Statutory}\ \mathsf{MTR}$

	l N	1argin	Tax liability		
Income range	EITC	Tax	Payroll	Total	(at lower limit)
\$0 \$16,510	-0.4	0	0.0765	-0.3235	\$0.00
\$16,510 \$20,800	0	0	0.0765	0.0765	-\$5340.98
\$20,800 \$21,650			0.0765	0.1765	-\$5012.80
\$21,650 \$37,700	0.2106	0.10	0.0765	0.3871	-\$4,433.78
\$37,700 \$52,918	0.2106	0.12	0.0765	0.4071	\$1,504.55
\$52,918 \$80,650	0	0.12	0.0765	0.1965	\$7,654.39
\$80,650					'

- What is effective income at \$16,510?
- Is the total MTR strictly progressive/vertically equitable?

¹Standard deduction

- For single parents of two, income \geq \$20.8K¹ taxed (2023)
- Statutory MTR ↑ from 10% to 12% for in EITC range
- Payroll tax (employee's share only): 7.65%

 $\mathsf{Total}\ \mathsf{MTR} = \mathsf{Implicit}\ \mathsf{MTR} + \mathsf{Statutory}\ \mathsf{MTR}$

	l N	1argin	Tax liability		
Income range	EITC	Tax	Payroll	Total	(at lower limit)
\$0 \$16,510	-0.4	0	0.0765	-0.3235	\$0.00
\$16,510 \$20,800	0	0	0.0765	0.0765	-\$5340.98
\$20,800 \$21,650			0.0765	0.1765	-\$5012.80
\$21,650 \$37,700	0.2106	0.10	0.0765	0.3871	-\$4,433.78
\$37,700 \$52,918	0.2106	0.12	0.0765	0.4071	\$1,504.55
\$52,918 \$80,650	0	0.12	0.0765	0.1965	\$7,654.39
\$80,650					'

- What is effective income at \$16,510?
- Is the total MTR strictly progressive/vertically equitable?

¹Standard deduction

- For single parents of two, income \geq \$20.8K¹ taxed (2023)
- Statutory MTR ↑ from 10% to 12% for in EITC range
- Payroll tax (employee's share only): 7.65%

 $\mathsf{Total}\ \mathsf{MTR} = \mathsf{Implicit}\ \mathsf{MTR} + \mathsf{Statutory}\ \mathsf{MTR}$

	l N	1argin	Tax liability		
Income range	EITC	Tax	Payroll	Total	(at lower limit)
\$0 \$16,510	-0.4	0	0.0765	-0.3235	\$0.00
\$16,510 \$20,800	0	0	0.0765	0.0765	-\$5340.98
\$20,800 \$21,650			0.0765	0.1765	-\$5012.80
\$21,650 \$37,700	0.2106	0.10	0.0765	0.3871	-\$4,433.78
\$37,700 \$52,918	0.2106	0.12	0.0765	0.4071	\$1,504.55
\$52,918 \$80,650	0	0.12	0.0765	0.1965	\$7,654.39
\$80,650					'

- What is effective income at \$16,510?
- Is the total MTR strictly progressive/vertically equitable?

¹Standard deduction

- For single parents of two, income \geq \$20.8K¹ taxed (2023)
- Statutory MTR ↑ from 10% to 12% for in EITC range
- Payroll tax (employee's share only): 7.65%

 $\mathsf{Total}\ \mathsf{MTR} = \mathsf{Implicit}\ \mathsf{MTR} + \mathsf{Statutory}\ \mathsf{MTR}$

	l N	1argin	Tax liability		
Income range	EITC	Tax	Payroll	Total	(at lower limit)
\$0 \$16,510	-0.4	0	0.0765	-0.3235	\$0.00
\$16,510 \$20,800	0	0	0.0765	0.0765	-\$5340.98
\$20,800 \$21,650			0.0765	0.1765	-\$5012.80
\$21,650 \$37,700	0.2106	0.10	0.0765	0.3871	-\$4,433.78
\$37,700 \$52,918	0.2106	0.12	0.0765	0.4071	\$1,504.55
\$52,918 \$80,650	0	0.12	0.0765	0.1965	\$7,654.39
\$80,650					'

- What is effective income at \$16,510?
- Is the total MTR strictly progressive/vertically equitable?

¹Standard deduction

- For single parents of two, income \geq \$20.8K¹ taxed (2023)
- Statutory MTR ↑ from 10% to 12% for in EITC range
- Payroll tax (employee's share only): 7.65%

 $\mathsf{Total}\ \mathsf{MTR} = \mathsf{Implicit}\ \mathsf{MTR} + \mathsf{Statutory}\ \mathsf{MTR}$

		l N	/largin	Tax liability		
Income	range	range EITC Tax Pay			Total	(at lower limit)
\$0	\$16,510	-0.4	0	0.0765	-0.3235	\$0.00
\$16,510	\$20,800	0	0	0.0765	0.0765	-\$5340.98
\$20,800	\$21,650	0	0.10	0.0765	0.1765	-\$5012.80
\$21,650	\$37,700	0.2106	0.10	0.0765	0.3871	-\$4,433.78
\$37,700	\$52,918	0.2106	0.12	0.0765	0.4071	\$1,504.55
\$52,918	\$80,650	0	0.12	0.0765	0.1965	\$7,654.39
\$80,650		0	0.22	0.0765	0.2965	\$15,786.93

- What is effective income at \$16,510?
- Is the total MTR strictly progressive/vertically equitable?

¹Standard deduction

Automate that: Policy Rules Database

- Real-world programs have many more moving parts:
 - Multiple benefit phase-outs
 - Various eligibility criteria
 - State-level variations
- Federal Reserve Bank of Atlanta's Policy Rules Database
 - Model multiple program interactions for different households
 - Download data of payments by \$1000 increments

Try it yourself! (https://tinyurl.com/fed-prd)

Example

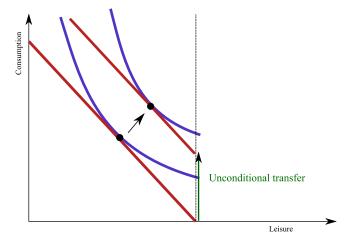
- Set the county to Dutchess County, NY and enter your age
- Select Medicaid for Adults, Health Insurance Marketplace Subsidy, Section 8, SNAP, and EITC
- Are you eligible for all of these programs? Why or why not?
- Download the data to calculate the total MTR at each earnings level – what are the implications for labor supply?

• Transfers affect budget constraint, i.e. incentives to work

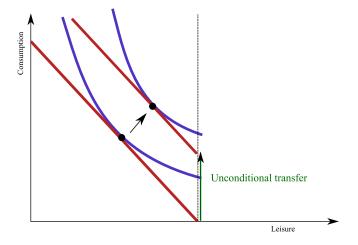
²If leisure is a normal good

- Transfers affect budget constraint, i.e. incentives to work
- Unconditional transfers lower labor supply via income effect²
 - Caveat: If the goal is to ↑ recipient welfare, ↓ work is fine. It's
 only an efficiency loss if the the aim is ↑ income

²If leisure is a normal good

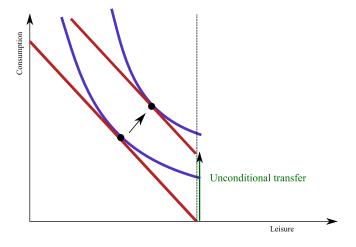

"Review" of Labor Supply Derivation

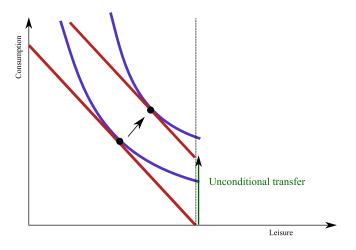
- L is leisure, so 1 L is labor (a percent of time)
- Work 100% of time, earn w = 150 (w is opp. cost of leisure)
- Consumption: C with price 1
- Receive a transfer T = 50
- Utility function: $U(C, L) = \ln(C) + \ln(L)$
- Budget constraint: C = 150(1 L) + 50


$$\max_{C,L} \ln(C) + \ln(L)$$

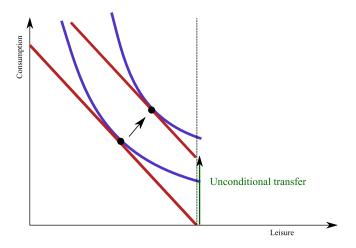
s.t. $C = 150(1 - L) + 50$ or $C + 150L = 200$

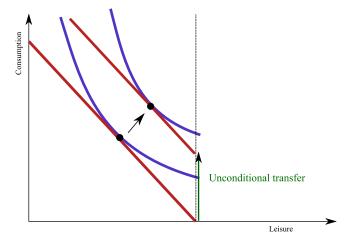
This is the same as any old utility maximization problem, but with a slightly more complicated budget constraint.



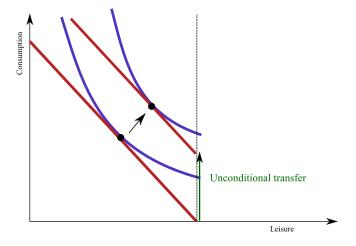

No transfer :
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 150(1 - L)$
First MRS : $\frac{L}{C} = \frac{1}{150} \Rightarrow C = 150L$

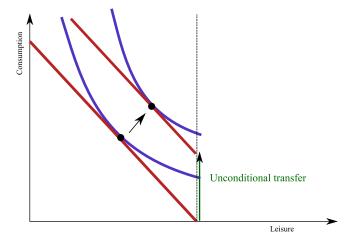
No transfer :
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 150(1-L)$
Sub into BC :150 $L = 150(1-L)$

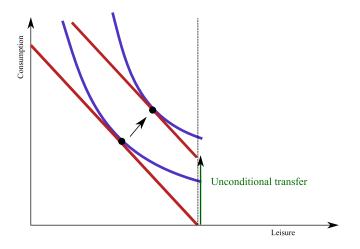

No transfer :
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 150(1 - L)$
Solve for $L: L^* = 0.5$


No transfer :
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 150(1-L)$

Sub
$$L^* = .5$$
 to find $C : C^* = 150L^* = 75$




With transfer :
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 150(1-L) + 50$


With transfer :
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 150(1-L) + 50$
First MRS : $\frac{L}{C} = \frac{1}{150} \Rightarrow C = 150 \times (1-L)$

With transfer :
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 150(1-L) + 50$
Sub into BC :150 $L = 150(1-L) + 50$

With transfer :
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 150(1-L) + 50$
Solve for $L:L^* = 0.6666$

With transfer :
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 150(1-L) + 50$

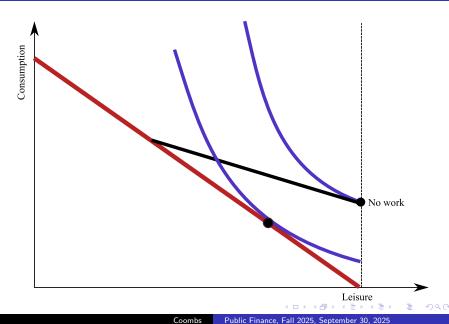
Sub
$$L^* = .6666$$
 to find $C: C^* = 150 * (1 - .6666) + 50 = 100$

- Transfers affect budget constraint, i.e. incentives to work
- Unconditional transfers lower labor supply via income effect²
 - Caveat: If the goal is to ↑ recipient welfare, ↓ work is fine. It's
 only an efficiency loss if the the aim is ↑ income
- Removing benefits at high income keeps costs under control

²If leisure is a normal good

- Transfers affect budget constraint, i.e. incentives to work
- Unconditional transfers lower labor supply via income effect²
 - Caveat: If the goal is to ↑ recipient welfare, ↓ work is fine. It's
 only an efficiency loss if the the aim is ↑ income
- Removing benefits at high income keeps costs under control
- ...hence, benefits are taken away as income increases (slowly or sharply, depending on the design)

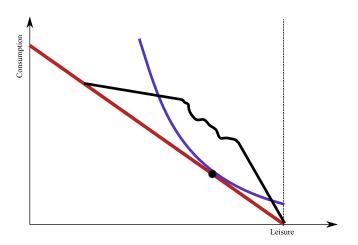
²If leisure is a normal good


- Transfers affect budget constraint, i.e. incentives to work
- Unconditional transfers lower labor supply via income effect²
 - Caveat: If the goal is to ↑ recipient welfare, ↓ work is fine. It's
 only an efficiency loss if the the aim is ↑ income
- Removing benefits at high income keeps costs under control
- ...hence, benefits are taken away as income increases (slowly or sharply, depending on the design)
- Reducing transfer results in reducing the price of leisure ⇒↓
 labor due to the substitution effect

²If leisure is a normal good

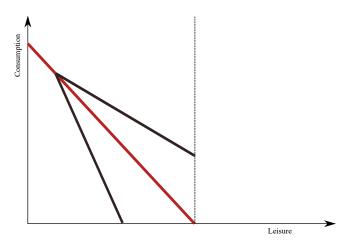
 Providing transfers to those who do not work may lead to others not working

Basic Income and tax



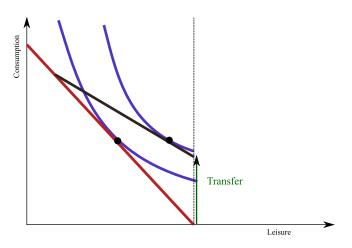
- Providing transfers to those who do not work may lead to others not working
- Subsidizing work at the bottom of the distribution instead, eliminates this possibility

- Providing transfers to those who do not work may lead to others not working
- Subsidizing work at the bottom of the distribution instead, eliminates this possibility
- Phase-in, phase-out encourages labor force participation


- Providing transfers to those who do not work may lead to others not working
- Subsidizing work at the bottom of the distribution instead, eliminates this possibility
- Phase-in, phase-out encourages labor force participation
- This design still must discourage hours of work in some region

Kinked budget constraint: EITC-like

The slope of the BC changes at kink points. Note the non-linearities from implicit marginal tax rate interactions.


Kinked budget constraint: Simpler example

Which budget constraint shows the price of leisure decreasing?

Kinked budget constraint

With a kinked BC, the slope of the BC changes at the kink point.

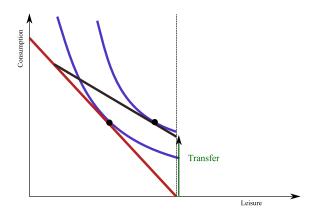
Utility maximization with a kinked BC

- Find the kink point of a program
- Solve for optimal choices on each segment of the BC
- Confirm that the optimal choice would be in the relevant segment of the BC
- If so, compare utilities
- Pick the bundle that gives the highest utility

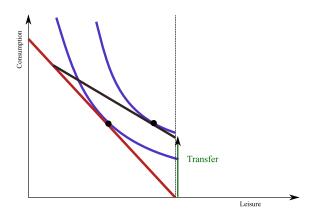
Finding the kink point

• Transfer pays \$50 at zero earnings, reduced \$0.5 per \$ earned:

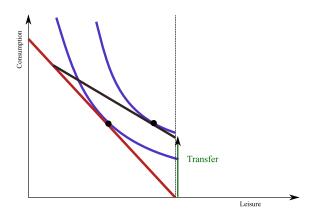
$$B(E) = 50 - 0.5 E$$
 \Rightarrow $B(E) = 0$ when $E = 100$.

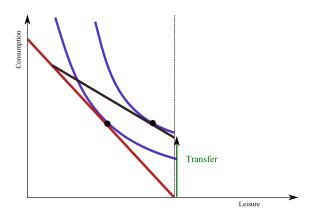

- Earnings at kink: $E^* = 100$.
- With wage w, leisure at the kink: $L_{\rm kink} = 1 \frac{100}{w}$, consumption $C_{\rm kink} = 100$.
- Piecewise budget (no taxes):

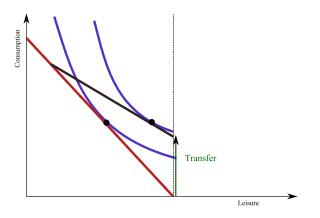
$$C = \begin{cases} 0.5 \ w(1-L) + 50, & \text{if } w(1-L) < 100, \\ w(1-L), & \text{if } w(1-L) \ge 100. \end{cases}$$


FOCs on each segment (tangencies)

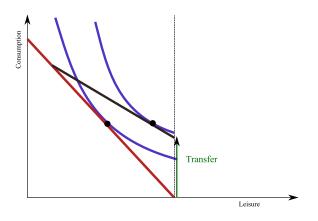
- $U(C, L) = \ln C + \ln L \Rightarrow MRS_{CL} = \frac{C}{L}$.
- Segment 1 (with transfer): slope = $0.5 w \Rightarrow$ tangency C = 0.5 w L.
- **Segment 2 (no transfer):** slope $= w \Rightarrow$ tangency C = w L.
- Always check feasibility of a segment's tangency against its own segment condition.


Seg 1:
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 75(1-L) + 50$ if $150(1-L) < 100$ MRS : $\frac{L}{C} = \frac{1}{75} \Rightarrow C = 75L$


Seg 1:
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 75(1-L) + 50$ if $150(1-L) < 100$
Sub into BC: $75L = 75(1-L) + 50$

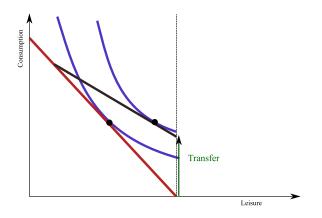

Seg 1:
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 75(1-L) + 50$ if $150(1-L) < 100$
Solve for L : $L^* = \frac{125}{150} = 0.8333$

Seg 1:
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 75(1-L) + 50$ if $150(1-L) < 100$
Sub $L^* = .8333$ to find $C: C^* = 75(1-L^*) + 50 = 62.5$

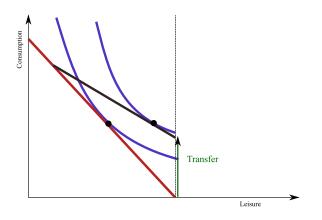


Seg 1:
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 75(1-L) + 50$ if $150(1-L) < 10$

Sub
$$L^* = .8333$$
 to find $C : C^* = 75(1 - L^*) + 50 = 62.5$

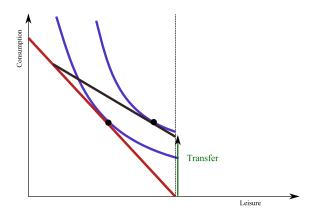

Feasible based on pre-tax income?150 $(1 - L^*) = 25 < 100$ Yes!

Seg 2:
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 150(1-L)$ if $150(1-L) \ge 100$



Seg 2:
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 150(1-L)$ if $150(1-L) \ge 100$

Solved before: $L^* = .5, C^* = 150(1 - L^*) = 75$



Seg 2:
$$\max_{C,L} \ln(C) + \ln(L)$$
 s.t. $C = 150(1-L)$ if $150(1-L) \ge 100$

Solved before: $L^* = .5$, $C^* = 150(1 - L^*) = 75$

Feasible based on pre-tax income? $150(1-L^*)=75\geq 100$ No!

Solved before:
$$L^* = .5, C^* = 150(1 - L^*) = 75$$

Feasible based on pre-tax income? $150(1-L^*)=75\geq 100$ No!

Conclusion: Individual chooses subsidy option.

When do you compare utilities?

In that example, I did not need to compare utilities – the no subsidy option was not feasible.

If w = 250, then the BC is:

$$C = \begin{cases} .5 \times 250(1-L) + 50, & \text{if } 250(1-L) < 100 \\ 250(1-L), & \text{if } 250(1-L) \ge 100 \end{cases}$$

- Seg 1: $L^* = .7$, $C^* = 87.5$, $250(1 L^*) = 75 < 100$, feasible
- Seg 2: $L^* = .5$, $C^* = 125$, $250(1 L^*) = 120 \ge 100$, feasible
- Based on utilities:
 - Seg 1: $U^* = \ln(87.5) + \ln(.7) \approx 4.11$
 - Seg 2: $U^* = \ln(125) + \ln(.5) \approx 4.13$
- So the individual chooses the no subsidy option.

U(C, L) = ln(C) + ln(L). Wage rate w = 100. L is between 0 and 1. Subsidy T = 20 if not working, reduced t = 0.5

Steps to answer:

- What is the kink point?
- What is the BC and optimal choice in each region?

• Are both regions valid (Compare $w(1-L^*)$ to T/t)?

• If so, compare utilities

U(C, L) = ln(C) + ln(L). Wage rate w = 100. L is between 0 and 1. Subsidy T = 20 if not working, reduced t = 0.5

Steps to answer:

- What is the kink point? $B(E) = 20 0.5E \Rightarrow E = 40$
- What is the BC and optimal choice in each region?

• Are both regions valid (Compare $w(1-L^*)$ to T/t)?

• If so, compare utilities

U(C, L) = ln(C) + ln(L). Wage rate w = 100. L is between 0 and 1. Subsidy T = 20 if not working, reduced t = 0.5

Steps to answer:

- What is the kink point? $B(E) = 20 0.5E \Rightarrow E = 40$
- What is the BC and optimal choice in each region?

$$C = \begin{cases} 50(1-L) + 20, & \text{if } 100(1-L) < 40\\ 100(1-L), & \text{if } 100(1-L) \ge 40 \end{cases}$$

• Are both regions valid (Compare $w(1-L^*)$ to T/t)?

• If so, compare utilities

U(C, L) = ln(C) + ln(L). Wage rate w = 100. L is between 0 and 1. Subsidy T = 20 if not working, reduced t = 0.5

Steps to answer:

- What is the kink point? $B(E) = 20 0.5E \Rightarrow E = 40$
- What is the BC and optimal choice in each region?

$$C = \begin{cases} 50(1-L) + 20, & \text{if } 100(1-L) < 40\\ 100(1-L), & \text{if } 100(1-L) \ge 40 \end{cases}$$

- Are both regions valid (Compare $w(1-L^*)$ to T/t)?
 - Seg 1: $L^* = .7$, $C^* = 35$, $100(1 L^*) = 30 < 40$, feasible
 - Seg 2: $L^* = .5$, $C^* = 50$, $100(1 L^*) = 50 \ge 40$, feasible
- If so, compare utilities

U(C, L) = ln(C) + ln(L). Wage rate w = 100. L is between 0 and 1. Subsidy T = 20 if not working, reduced t = 0.5

Steps to answer:

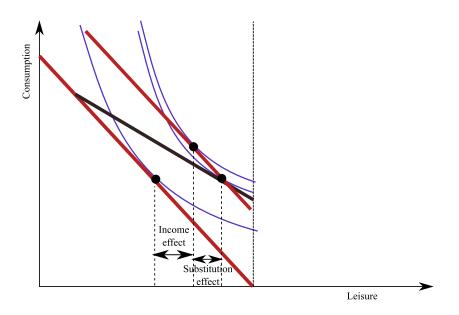
- What is the kink point? $B(E) = 20 0.5E \Rightarrow E = 40$
- What is the BC and optimal choice in each region?

$$C = \begin{cases} 50(1-L) + 20, & \text{if } 100(1-L) < 40\\ 100(1-L), & \text{if } 100(1-L) \ge 40 \end{cases}$$

- Are both regions valid (Compare $w(1-L^*)$ to T/t)?
 - Seg 1: $L^* = .7$, $C^* = 35$, $100(1 L^*) = 30 < 40$, feasible
 - Seg 2: $L^* = .5$, $C^* = 50$, $100(1 L^*) = 50 \ge 40$, feasible
- If so, compare utilities
 - Seg 1: $U^* = \ln(35) + \ln(.7) \approx 3.19$
 - Seg 2: $U^* = \ln(50) + \ln(.5) \approx 3.21$

Welfare and incentives to work

- Transfers affect budget constraint, i.e. incentives to work
- Unconditional transfers lower labor supply via income effect²
 - Caveat: If the goal is to ↑ recipient welfare, ↓ work is fine. It's
 only an efficiency loss if the the aim is ↑ income
- Removing benefits at high income keeps costs under control
- ...hence, benefits are taken away as income increases (slowly or sharply, depending on the design)
- Reducing transfer results in reducing the price of leisure ⇒↓
 labor due to the substitution effect
- Substitution effect represents a loss of welfare


²If leisure is a normal good

Welfare and incentives to work

- Transfers affect budget constraint, i.e. incentives to work
- Unconditional transfers lower labor supply via income effect²
 - Caveat: If the goal is to ↑ recipient welfare, ↓ work is fine. It's
 only an efficiency loss if the the aim is ↑ income
- Removing benefits at high income keeps costs under control
- ...hence, benefits are taken away as income increases (slowly or sharply, depending on the design)
- Reducing transfer results in reducing the price of leisure ⇒↓
 labor due to the substitution effect
- Substitution effect represents a loss of welfare
 - Same monetary benefits could provide a higher utility level if offered without distorting prices (recall welfare theorems)

²If leisure is a normal good

Welfare and incentives to work

- Transfers affect budget constraint, i.e. incentives to work
- Unconditional transfers lower labor supply via income effect²
 - Caveat: If the goal is to ↑ recipient welfare, ↓ work is fine. It's
 only an efficiency loss if the the aim is ↑ income
- Removing benefits at high income keeps costs under control
- ...hence, benefits are taken away as income increases (slowly or sharply, depending on the design)
- Reducing transfer results in reducing the price of leisure ⇒↓
 labor due to the substitution effect
- Substitution effect represents a loss of welfare
 - Same monetary benefits could provide a higher utility level if offered without distorting prices (recall welfare theorems)
- There are many ways of taking away benefits, but there is no way to avoid work disincentives everywhere

²If leisure is a normal good

Disincentives — how serious they can be

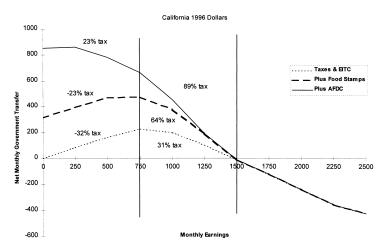


Fig. 1. Net transfers/taxes for California in 1996.

Recent RCTs on cash assistance/UBI

- Many RCTs about giving cash directly to people
- Progresa in Mexico a cash transfer program conditional on school attendance (Parker et al. (2017)):
 - 1.4 more years of school attendance, lower child labor, no reduction in parental labor supply
- Vivalt et al. (2025) gave out \$1000/month versus \$50/month (control) in IL and TX for three years
 - Non-transfer income fell \$1,800/year after three years, 3.9 pp drop in labor force participation
 - Work hours fell by 1-2 hours/week after three years, leisure hours up
- Spending up in all UBI studies
- Ambiguous whether social welfare improvements offset labor disincentives, admin costs

Reducing cost of welfare — Targeting

- Relying on earnings imperfect as it creates work disincentives.
- Why not target based on other characteristics? Ideally,
 - they should be strongly related to low earnings capacity
 - they should be immutable
- Examples:
- Potential problems:

Reducing cost of welfare — Targeting

- Relying on earnings imperfect as it creates work disincentives.
- Why not target based on other characteristics? Ideally,
 - they should be strongly related to low earnings capacity
 - they should be immutable
- Examples: blindness, single mothers.
- Potential problems:

Reducing cost of welfare — Targeting

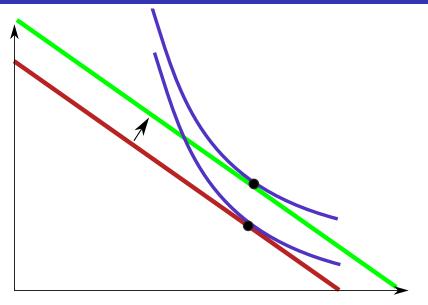
- Relying on earnings imperfect as it creates work disincentives.
- Why not target based on other characteristics? Ideally,
 - they should be strongly related to low earnings capacity
 - they should be immutable
- Examples: blindness, single mothers.
- Potential problems:
 - few truly immutable characteristics
 - missing people who do not fall in the right category

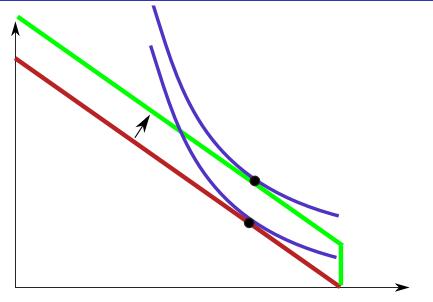
Reducing cost of welfare — in-kind programs

Non-cash benefits or cash benefits earmarked for specific goods/services, typically untaxed and not counted as income

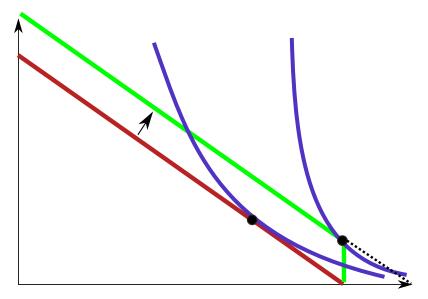
Reducing cost of welfare — in-kind programs

Non-cash benefits or cash benefits earmarked for specific goods/services, typically untaxed and not counted as income


- Medicaid (70.8M recipients, \$909B in FY2024)
- Housing assistance like vouchers (2.3M recipients, \$32.3B in FY2024)
- Food assistance
 - Special Supplemental Nutrition Program for Women, Infants and Children (WIC) (6.2M recipients, \$7.2B in FY2024)
 - Benefits as an electronic benefit transfer (EBT) card
 - Targeted to pregnant women, infants, and children
 - Supplemental Nutrition Assistance Program (SNAP or Food Stamps) (\$79.8B in FY2024, 42.3M recipients)
 - Benefits as an electronic benefit transfer (EBT) card
 - Targeted to low-income individuals and families


Reducing cost of welfare — in-kind transfers

 Cash transfers should be preferred by the recipients to in-kind transfers of the same value


Cash transfer

In-kind transfer

Inefficient in-kind transfer

Reducing cost of welfare — in-kind transfers

- Cash transfers should be preferred by the recipients to in-kind transfers of the same value
- ...but many transfers in practice are in-kind: Why?
- Discouragement from reliance on welfare:
 - making welfare less attractive reduces the incentive to "pretend" to be poor (ordeal mechanisms)
 - Examples: low quality health insurance, soup kitchens, complicated application process
- Ethical stance on how welfare should be spent
- "Commodity egalitarianism"
 - certain goods (not welfare) should be distributed equally
- Easier to provide/use in-kind transfers (e.g. homeless shelters)

Section 8 Housing Choice Vouchers

In 1974, HUD introduced housing choice vouchers, managed by Public Housing Agencies (PHAs):

- Voucher use improves housing stability, education, and labor market outcomes relative to public housing units
 - Eligibility: family size, income, immigration status
 - Covers rent exceeding 30% of tenant income, up to a Fair Market Rent calculated by HUD and adjusted locally
 - Waitlists common due to high demand
- Complicated application process:
 - Fill out lengthy application and be picked off waitlist
 - Find a landlord that will partner with the PHA in limited time
 - Pass housing inspection and rent reasonableness test
 - Lease between landlord and tenant, contract between PHA and landlord
- Only 60% of vouchers used, fewer for families with children
- Some advocate for direct rental assistance (DRA) cash

PHLHousing+ RCT on DRA

Outcomes	Post-Baseline Survey Time	Control Rate	Voucher Rate	Voucher Difference Compared to Control	Cash Rate	Cash Difference Compared to Control
Forced Moves	6 months	3.3 per 100	9.0 per 100	170%	3.4 per 100	1%
	12 months	5.5 per 100	4.6 per 100	- 17%	2.0 per 100	- 63%
	18 months	6.1 per 100	2.6 per 100	- 57%	1.7 per 100	- 72%
	24 months	6.2 per 100	2.3 per 100	- 64%	1.5 per 100	- 75%
Homelessness	12 months	8.3 per 100	5.9 per 100	- 29%	5.3 per 100	- 36%
	18 months	7.8 per 100	6.3 per 100	- 19%	2.5 per 100	- 67%
	24 months	6.9 per 100	4.2 per 100	- 39%	3.0 per 100	- 57%
Housing Quality	6 months	36.3 per 100	32.4 per 100	- 11%	28.6 per 100	- 21%
	12 months	34.0 per 100	30.2 per 100	- 11%	28.5 per 100	- 16%
	18 months	36.7 per 100	32.4 per 100	- 12%	26.9 per 100	- 27%
	24 months	33.3 per 100	23.1 per 100	- 31%	26.1 per 100	- 22%

Figure: PHLHousing+ randomized DRA vs. HCV vs. no assistance. 100% take-up for DRA with a median time of 21 days vs. 75% with a median time of 110 days for HCV, reduced homelessness and forced moves, but housing quality better under HCV.

What else would you want to test about DRA?

- I am working an RCT on DRA in Lewiston, Maine with a former Bates colleague and the Lewiston PHA
- Slightly smaller sample size expected, but we are exploring different questions to ask about DRA
- What might you ask?

Ordeal/hassle mechanisms

- Ordeal/hassle mechanisms make it more burdensome (usually time-consuming) to receive welfare
- Essentially, people who have a higher opportunity cost of time will be less likely to apply for welfare
- Higher earners do not apply
- Those with less need drop out of the application process
- Can see this in a utility framework where there is a time cost of applying
- But empirical support is limited here: see Deshpande and Li (2019) and PHA study

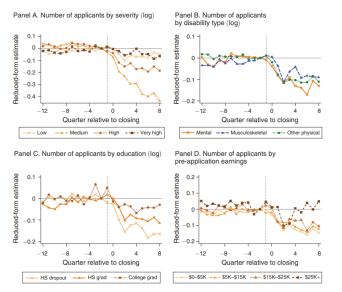


FIGURE 4. EFFECT OF CLOSINGS ON NUMBER OF DISABILITY APPLICATIONS, BY SUBGROUP

Figure: From Deshpande and Li (2019)

Conclusion

- Low-income support systems within the US fill different gaps,
 but create work disincentives
- Programs can interact to create extremely high implied marginal tax rates on work
- "Phase-out" of benefits at high-income levels implicitly triggers substitution away from work
 - \Rightarrow Possibly a drop in welfare, definite drop in revenue
- Targeting immutable characteristics remove moral hazard affects, but these are rare
- In-kind transfers and "ordeal" mechanisms tradeoff efficiency of benefits for targeting