Empirical Methods, Fall 2025

Wojciech Kopczuk, adapted by Kyle Coombs

Vassar College

September 11, 2025

- Now Gov. Hochul asks you to estimate the effects of the 2025 EITC increase on labor force participation and hours worked
- An aide says NY EITC recipients worked the same hours on average in 2025 as they did in 2024, so the EITC had no effect

- Now Gov. Hochul asks you to estimate the effects of the 2025 EITC increase on labor force participation and hours worked
- An aide says NY EITC recipients worked the same hours on average in 2025 as they did in 2024, so the EITC had no effect
- Any issues with this estimation strategy?

- Now Gov. Hochul asks you to estimate the effects of the 2025 EITC increase on labor force participation and hours worked
- An aide says NY EITC recipients worked the same hours on average in 2025 as they did in 2024, so the EITC had no effect
- Any issues with this estimation strategy?
- What alternatives are there?

- Now Gov. Hochul asks you to estimate the effects of the 2025 EITC increase on labor force participation and hours worked
- An aide says NY EITC recipients worked the same hours on average in 2025 as they did in 2024, so the EITC had no effect
- Any issues with this estimation strategy?
- What alternatives are there?
- What data would you want to answer this question?

The key problem: correlation is not causality.

The key problem: correlation is not causality.

Variables are **correlated** if they move together.

The key problem: correlation is not causality.

Variables are **correlated** if they move together.

The relationship between variables is **causal** if one of the variables is causing movement in the other.

The key problem: correlation is not causality.

Variables are **correlated** if they move together.

The relationship between variables is **causal** if one of the variables is **causing** movement in the other.

The key problem: correlation is not causality.

Variables are **correlated** if they move together.

The relationship between variables is **causal** if one of the variables is **causing** movement in the other.

Examples:

The key problem: correlation is not causality.

Variables are **correlated** if they move together.

The relationship between variables is **causal** if one of the variables is **causing** movement in the other.

Examples:

- roosters and sunrise
- per capita cheese consumption and deaths by bedsheet entanglement
- education and income
- tax rates and income

More at https://www.tylervigen.com/spurious-correlations

Suppose that variables A and B are correlated. What are the possibilities?

Suppose that variables A and B are correlated. What are the possibilities?

Suppose that variables A and B are correlated. What are the possibilities?

- A is causing B
- B is causing A
- Some other factor is causing both A and B
- Accident there is no true relationship (in small samples)

Suppose that variables A and B are correlated. What are the possibilities?

- A is causing B
- B is causing A
- Some other factor is causing both A and B
- Accident there is no true relationship (in small samples)

Identification problem: if variables are correlated, how can we establish whether one is causing the other?

Suppose that variables A and B are correlated. What are the possibilities?

- A is causing B
- B is causing A
- Some other factor is causing both A and B
- Accident there is no true relationship (in small samples)

Identification problem: if variables are correlated, how can we establish whether one is causing the other?

Furthermore, we want to know the direction of causality **and** the strength of the effect (there may be *both* a causal relationship and correlation)

Extra challenge in economics: people optimize, which can offset or overstate a causal relationship

• Ideal, infeasible experiment: apply different treatments (more education, different tax system etc.) to the same population in parallel universes.

- Ideal, infeasible experiment: apply different treatments (more education, different tax system etc.) to the same population in parallel universes.
- Randomly assigning treatment attempts to gets close to ideal

¹Other forms of bias include sample selection, multicollinearity, misspecification, autocorrelation, heteroskedasticity, aggregation bias, publication bias, etc. ▶ < ₹ ▶ € ₹

- Ideal, infeasible experiment: apply different treatments (more education, different tax system etc.) to the same population in parallel universes.
- Randomly assigning treatment attempts to gets close to ideal
- Treatment and Control groups

Endogeneity bias¹: Differences between treatment and control that is *correlated* with but not due to the treatment.

Exogeneity: Treatment is independent of the potential outcomes.

 $^{^1}$ Other forms of bias include sample selection, multicollinearity, misspecification, autocorrelation, heteroskedasticity, aggregation bias, publication bias, etc. > \ge

- Ideal, infeasible experiment: apply different treatments (more education, different tax system etc.) to the same population in parallel universes.
- Randomly assigning treatment attempts to gets close to ideal
- Treatment and Control groups
 - **Endogeneity bias**¹: Differences between treatment and control that is *correlated* with but not due to the treatment.
 - **Exogeneity:** Treatment is independent of the potential outcomes.
- Randomization means treatment and control differ only due to treatment

¹Other forms of bias include sample selection, multicollinearity, misspecification, autocorrelation, heteroskedasticity, aggregation bias, publication bias, etc. → ⟨ ₃ → |) | } }) }

- Ideal, infeasible experiment: apply different treatments (more education, different tax system etc.) to the same population in parallel universes.
- Randomly assigning treatment attempts to gets close to ideal
- Treatment and Control groups
 - **Endogeneity bias**¹: Differences between treatment and control that is *correlated* with but not due to the treatment.
 - **Exogeneity:** Treatment is independent of the potential outcomes.
- Randomization means treatment and control differ only due to treatment
- The difference in outcomes is then the causal effect of the treatment

¹Other forms of bias include sample selection, multicollinearity, misspecification, autocorrelation, heteroskedasticity, aggregation bias, publication bias, etc. → ₹ ≥ → ₹

Potential problems with randomizatior

Potential problems with randomization

- Do it wrong
- Attrition (leaving the study)
- External validity (volunteers special, experiments stylized)
- Cost (expensive to enforce)
- Ethical problems (See IRB)

Examples of randomized studies in Public Economics

- Randomized tax enforcement experiments info provision, audits
- Effect of explaining EITC incentives on income/labor supply
- Randomizing various aspects of 1996 welfare reform (job training, work requirements, case worker assistance)
- Public health insurance (Medicaid) assigned by lottery in Oregon
- Universal Basic Income experiments

- Data based on observation and measurement of actual behavior in the real world and not generated by an experiment
- Time series: observing (multiple) series over time

- Data based on observation and measurement of actual behavior in the real world and not generated by an experiment
- Time series: observing (multiple) series over time
- Cross-sectional: observing many units (e.g., individuals, firms) once

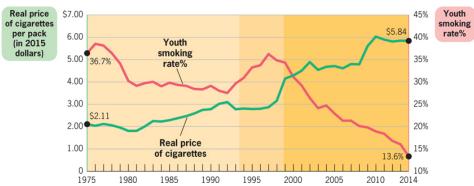
- Data based on observation and measurement of actual behavior in the real world and not generated by an experiment
- Time series: observing (multiple) series over time
- Cross-sectional: observing many units (e.g., individuals, firms) once
- Repeated cross-section: a lot of units at different points in time (but potentially different ones at different points)

- Data based on observation and measurement of actual behavior in the real world and not generated by an experiment
- Time series: observing (multiple) series over time
- Cross-sectional: observing many units (e.g., individuals, firms) once
- Repeated cross-section: a lot of units at different points in time (but potentially different ones at different points)
- Panel data: a lot of units that can be tracked over time

Time-series analysis

- Comparison of movement of variables over time
- Problem: too many things change over time, is 2003 a good control for 2004?
- Useful when there are sharp, repeated, and "isolated" changes in the treatment variable of interest

Price of cigarettes and youth smoking rate

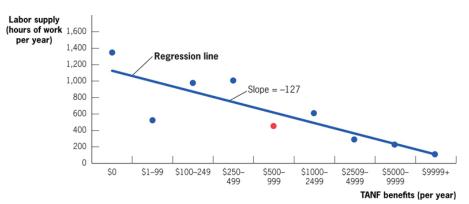


Gruber, Public Finance and Public Policy, Figure 3.1

Cross-sectional analysis

- Comparison of many individuals at one point in time
- Regression analysis: finding the best fitting relationship between the dependent variable (e.g., labor supply) and independent variables (e.g., welfare benefits, education, age)

Welfare benefits and labor supply



Gruber, *Public Finance and Public Policy*, Figure 3.4 What does the line capture?

Comments on regression analysis

• Econometric method to find the best fitting relationship: regression

$$Y = \beta \cdot X + \varepsilon$$

Comments on regression analysis

• Econometric method to find the best fitting relationship: regression

$$Y = \beta \cdot X + \varepsilon$$

Results that it yields

Comments on regression analysis

• Econometric method to find the best fitting relationship: regression

$$Y = \beta \cdot X + \varepsilon$$

- Results that it yields
 - ullet coefficient estimate \hat{eta} slope of the relationship (127 in the example)
 - standard error often in parentheses (e.g. 127 (25)), confidence interval, significance level of β the precision of the estimate.
 - In the TANF example, 95% confidence interval is approximately (78, 176) from $(\hat{\beta} 1.96 \cdot \text{SE}, \hat{\beta} + 1.96 \cdot \text{SE})$

Problems with regression analysis

- Regression describes a relationship: $X \uparrow 1 \Leftrightarrow Y \uparrow \beta$ (on average)
- Causality is *ceteris paribus*, "all else equal" $X \uparrow 1 \Rightarrow Y \uparrow \beta$ (on average)
- ullet Interpretation of eta depends on the research design and assumptions
- Observations may differ by Z, which affects $Y \Rightarrow$ not "all else equal"
- Do you have non-causal explanations for the TANF result?

Problems with regression analysis

- Regression describes a relationship: $X \uparrow 1 \Leftrightarrow Y \uparrow \beta$ (on average)
- Causality is *ceteris paribus*, "all else equal" $X \uparrow 1 \Rightarrow Y \uparrow \beta$ (on average)
- ullet Interpretation of eta depends on the research design and assumptions
- Observations may differ by Z, which affects $Y \Rightarrow$ not "all else equal"
- Do you have non-causal explanations for the TANF result?

$$Y = \beta \cdot X + \gamma \cdot Z + \varepsilon$$

 Potential solution: control for relevant characteristics Z (marital status, num. of children, education, potential wage etc.) — "control variables"

$$Y = \beta \cdot X + \gamma \cdot Z + \varepsilon$$

Problem: hard to control for everything that's relevant

$$Y = \beta \cdot X + \gamma \cdot Z + \varepsilon$$

- Problem: hard to control for everything that's relevant
- Imperfect solution: check robustness to many potential controls

$$Y = \beta \cdot X + \gamma \cdot Z + \varepsilon$$

- Problem: hard to control for everything that's relevant
- Imperfect solution: check robustness to many potential controls
- Better solution: understand why X may vary for reasons unrelated to ε and focus on exploiting this source of variation ("research design")

$$Y = \beta \cdot X + \gamma \cdot Z + \varepsilon$$

- Problem: hard to control for everything that's relevant
- Imperfect solution: check robustness to many potential controls
- Better solution: understand why X may vary for reasons unrelated to ε and focus on exploiting this source of variation ("research design")
- This is the goal of the "causal inference" toolkit

Causal inference toolkit

What are some ways to do causal inference?

Causal inference toolkit

- Randomized experiments the gold standard
- **Instrumental variables** a variable that is correlated with the treatment but not the outcome (except through the treatment)
- First differences comparing the same unit before and after a treatment
- Difference-in-difference comparing the difference between treatment and control before and after a treatment
- Regression discontinuity comparing units just above and below a threshold that are otherwise similar

- Treatment and control groups created by nature (or, rather, policy)
- Examples: tax cut in New Jersey but not in New York; ↑ EITC benefits for single parents, but not married parents

- Treatment and control groups created by nature (or, rather, policy)
- Examples: tax cut in New Jersey but not in New York; ↑ EITC benefits for single parents, but not married parents
- With repeated cross-section or panel data, you can observe changes before and after treatment in the treatment group:

$$\Delta \mathsf{treated} = \mathit{Y}^{\mathsf{treat}}_{\mathsf{Post}} - \mathit{Y}^{\mathsf{treat}}_{\mathsf{Pre}} = \mathsf{treatment} + \mathsf{other} \ \mathsf{things}$$

- Treatment and control groups created by nature (or, rather, policy)
- Examples: tax cut in New Jersey but not in New York; ↑ EITC benefits for single parents, but not married parents
- With repeated cross-section or panel data, you can observe changes before and after treatment in the treatment group:

$$\Delta \mathsf{treated} = \mathit{Y}^{\mathsf{treat}}_{\mathsf{Post}} - \mathit{Y}^{\mathsf{treat}}_{\mathsf{Pre}} = \mathsf{treatment} + \mathsf{other} \ \mathsf{things}$$

and control group:

$$\Delta$$
controls = $Y_{Post}^{control} - Y_{Pre}^{control}$ = other things

- Treatment and control groups created by nature (or, rather, policy)
- With repeated cross-section or panel data, you can observe changes before and after treatment in the treatment group:

$$\Delta \mathsf{treated} = \mathit{Y}^{\mathsf{treat}}_{\mathsf{Post}} - \mathit{Y}^{\mathsf{treat}}_{\mathsf{Pre}} = \mathsf{treatment} + \mathsf{other} \ \mathsf{things}$$

and control group:

$$\Delta$$
controls = $Y_{Post}^{control} - Y_{Pre}^{control} = other things$

• treatment = Δ treated - Δ controls

- Treatment and control groups created by nature (or, rather, policy)
- With repeated cross-section or panel data, you can observe changes before and after treatment in the treatment group:

$$\Delta \mathsf{treated} = \mathit{Y}^{\mathsf{treat}}_{\mathsf{Post}} - \mathit{Y}^{\mathsf{treat}}_{\mathsf{Pre}} = \mathsf{treatment} + \mathsf{other} \ \mathsf{things}$$

and control group:

$$\Delta$$
controls = $Y_{Post}^{control} - Y_{Pre}^{control} = other things$

- treatment = Δ treated Δ controls
- This is called "difference in difference"

- Treatment and control groups created by nature (or, rather, policy)
- With repeated cross-section or panel data, you can observe changes before and after treatment in the treatment group:

$$\Delta \text{treated} = Y_{\mathsf{Post}}^{\mathsf{treat}} - Y_{\mathsf{Pre}}^{\mathsf{treat}} = \mathsf{treatment} + \mathsf{other} \; \mathsf{things}$$

and control group:

$$\Delta$$
controls = $Y_{Post}^{control} - Y_{Pre}^{control} = other things$

- treatment = Δ treated Δ controls
- This is called "difference in difference"
- We can never be 100% certain that all sources of bias are dealt with

Difference-in-difference — example

Using Quasi-Experimental Variation					
Arkansas					
	1996	1998	Difference		
Benefit guarantee	\$5,000	\$4,000	-\$1,000		
Hours of work per year	1,000	1,200	200		
Louisiana					
	1996	1998	Difference		
Benefit guarantee	\$5,000	\$5,000	\$0		
Hours of work per year	1,050	1,100	50		

Gruber, Public Finance and Public Policy, Table 3.1

By how much did the EITC increase labor supply?

Difference-in-difference — example

Using Quasi-Experimental Variation					
Arkansas					
	1996	1998	Difference		
Benefit guarantee	\$5,000	\$4,000	-\$1,000		
Hours of work per year	1,000	1,200	200		
Louisiana					
	1996	1998	Difference		
Benefit guarantee	\$5,000	\$5,000	\$0		
Hours of work per year	1,050	1,100	50		

Gruber, Public Finance and Public Policy, Table 3.1

Results suggest that $\$1,000 \ (\$1,000-\$0)$ reduction in benefits caused an increase in hours of work by $150 \ (150=200-50)$

Difference-in-difference EITC (Eissa et al. 2006)

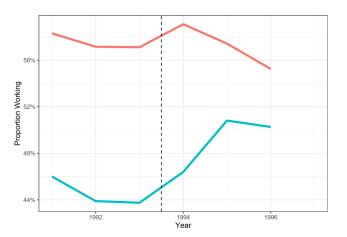
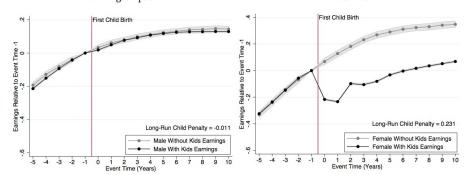


Figure 1: Difference-in-difference of the 1996 EITC increase on labor supply. The blue shows employment participation of single mothers, the red shows single women. Author's calculations using data compiled by Nick Huntington-Klein.

B: Men Who Have Children vs Men Who Don't
Earnings Impact

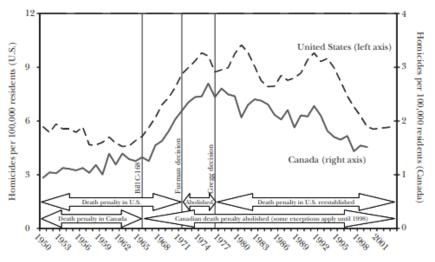
A: Women Who Have Children vs Women Who Don't

Earnings Impact



Source: Kleven, Henrik, Camille Landais, and Jakob Egholt Søgaard. 2019. "Children and Gender Inequality: Evidence from Denmark." American Economic Journal: Applied Economics, 11 (4): 181–209.

[The event: Having a child in Denmark for men and women.]



Source: Donohue and Wolfers (2005).

Source: Donohue and Wolfers (2005) via Angrist and Pischke (2010) shows the homicidal crime rate of US and Canada track similarly despite changes to death penalty – suggesting that the death penalty had little effect on crime.

• Treatment and control separated by an arbitrary threshold:

- Treatment and control separated by an arbitrary threshold:
 - Physical characteristics (weight, age, etc)
 - Policy thresholds (e.g. income, population, GPA etc.)
 - Political borders (e.g. county, state, etc.)

- Treatment and control separated by an arbitrary threshold:
 - Physical characteristics (weight, age, etc)
 - Policy thresholds (e.g. income, population, GPA etc.)
 - Political borders (e.g. county, state, etc.)

Within z units of a threshold z^* we see:

$$\Delta \text{treated} = \text{treatment} - \text{control}$$
 if $|z| \leq z^*$

Key assumptions:

- Treatment and control separated by an arbitrary threshold:
 - Physical characteristics (weight, age, etc)
 - Policy thresholds (e.g. income, population, GPA etc.)
 - Political borders (e.g. county, state, etc.)

Within z units of a threshold z^* we see:

$$\Delta \text{treated} = \text{treatment} - \text{control}$$
 if $|z| \leq z^*$

Key assumptions:

- No manipulation at the threshold
- Nothing else changes at the threshold

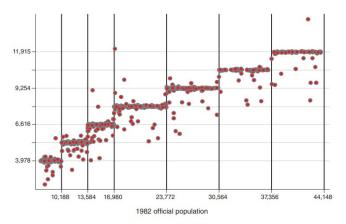


FIGURE 1. FPM TRANSFERS, 1982-1985 (,000 2008 Reais)

Source: Litschig, Stephan, and Kevin M. Morrison. 2013. "The Impact of Intergovernmental Transfers on Education Outcomes and Poverty Reduction." American Economic Journal: Applied Economics, 5 (4): 206–40.

Brazilian Municipality level data. X-axis is population binned by percentage points away from a threshold for receiving increased transfers due to a spending formula. Y-axis is amount of Fundo de Participação dos Municípios transfers received.

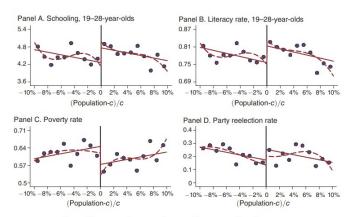


FIGURE 5. IMPACTS ON SCHOOLING, LITERACY, POVERTY, AND PARTY REELECTION

Source: Litschig, Stephan, and Kevin M. Morrison. 2013. "The Impact of Intergovernmental Transfers on Education Outcomes and Poverty Reduction." American Economic Journal: Applied Economics, 5 (4): 206–40.

Brazilian Municipality level data. X-axis is population binned by percentage points away from a threshold for receiving increased transfers due to a spending formula. Y-axis is the effect education, poverty, and political outcomes.

Structural Estimation

- We've covered "reduced form" methods.
- Structural estimation targets underlying utility or technology functions ("structural parameters").
- Imposes economic theory-based restrictions (e.g., negative substitution effect).
- Regression finds the best-fit line; structural estimation fits a model-based shape.
- Advantage: Explores more policy experiments.
 - Simulates untested policies.
 - Potentially more "externally" valid.
- Disadvantage: Imposes more assumptions on data.

Overview

- Correlation \neq causation
- Multivariate regression with controls only goes so far
- Randomized experiments are the gold standard
- Causal inference toolkit uses natural experiments to identify causality
- Structural estimation uses economic theory to identify causal effects