Behavioral responses to taxation

Kyle Coombs

Vassar College

October 7, 2025

Optimal Income Tax and Elasticities

Recall the optimal income tax formula:

$$\frac{t}{1-t} = -\frac{\operatorname{cov}\left(\lambda, \frac{I}{I^{M}}\right)}{\frac{1}{N} \sum_{i=1}^{N} \varepsilon_{i} \cdot \frac{I_{i}}{I^{M}}}$$

Policy goals:

- ▶ Define (taxable) income appropriately to capture the ability to pay (accurate I/I^M)
- ▶ Make avoidance/evasion more or less accessible (lower ε_i)
- Most empirical estimates of the tax elasticity of labor supply ε_i are fairly small
- ▶ What does small ε_i imply for income tax rates?
- How can people reduce their taxable income?

Lecture Goals

- Identify the different margins of response to taxation
- Characterize the empirical methods used to estimate the behavioral responses to taxation
- Contrast and evaluate tax avoidance and tax evasion and their impact on the social cost of taxation

Limitations of the Theory on Labor Supply

Theory assumes free adjustment of hours worked.

- ► Ambiguous effect on labor supply (income vs. substitution)
- Firms may want all workers to work the same hours
- Overtime pay makes it harder to adjust at a constant wage

Intensive versus Extensive Margin Adjustments:

- ▶ Intensive margin = hours changes for those who work
- Extensive margin = labor force participation

Variation by group:

- Primary vs secondary earners
- Low vs high income individuals
- ► Cost of work variation (e.g., parenthood)

Other Behavioral Margins of Adjustment:

- 1. Intensity of work, occupational choice, retirement
- 2. Short- and long-run elasticities may differ

Summary of Evidence on Labor Supply Responses

- both margins small for men/primary earners
- large response for secondary earners ($\varepsilon \in [0.5, 1]$), mostly via participation
 - \Rightarrow Declined as gender gaps in employment rates closed
- large responses for low-income/welfare/EITC recipients, again mostly on the participation margin

Behavioral responses to taxation

- ▶ The cost and incidence of taxes depend on responses
- ▶ For income tax, labor supply responsiveness, ε_i matters, but need:
 - To account for income (positive) and substitution (negative) effects
 - "Exogenous" variation in tax rates
 - Assume wage elasticity of labor supply = tax elasticity of labor supply

Excess burden of income tax

- Labor supply responses suggest small overall cost of income taxation, but...
- Types of responses to income tax
 - ▶ real labor supply, effort, occupational choice
 - shifting salary vs. fringe benefits, organization of firm
 - re-timing e.g., asset sales, timing of bonus payments
- Each behavior is a "costly" response to taxation
- ► Feldstein (1999) showed that cost of income tax depends on total taxable income, not just labor supply
- On the government side, revenue depends on taxable income only (it is $t \cdot I$ where I is taxable income)
- ▶ On the individual side, see next slide...

Taxable income summarizes effect on utility

- ▶ Utility: u(C, L, E) with consumption C, leisure L, and effort \mathcal{E}
- Budget constraint:

$$C = w(E)(1-L) - t \cdot \underbrace{[w(E)(1-L) - A]}_{I=\text{taxable income}} - g(A)$$

Wage rate $w(\mathcal{E})$ depends on effort; A is avoidance — it reduces taxable income but costs g(A).

- ▶ Effect of \uparrow *t* on utility:
 - Taxes higher
 - ▶ By envelope theorem, $C'(t) = L'(t) = \mathcal{E}'(t) = A'(t) = 0$ at optimum

$$\frac{\partial}{\partial t} \Big\{ u(C(t), L(t), \mathcal{E}(t)) \Big\} = -u_C \cdot I$$

(substitute out C with budget constraint)

Responsiveness of taxable income

- Empirical benefit: taxable income right in the tax data
- A lot of other problems though:
 - ► Measurement: Taxable income changes with policy
 - ► Variation rare: Tax structure somewhat stable
 - Reverse causality: Taxable income determines t
- Which side of the Laffer curve are we on?

$$\frac{\partial tI}{\partial t} = I + t \frac{\partial I}{\partial t} = I \left(1 - \frac{t}{1 - t} \varepsilon \right) \stackrel{?}{>} 0 \text{ depends on } \leftrightarrow \varepsilon \stackrel{?}{>} \frac{1 - t}{t}$$

- ▶ Initial work in the 1990s (Lindsay, Feldstein): high taxable income elasticity, so "wrong side of Laffer curve"
- Newer studies find high elasticities due to re-timing in short run; longer term effects much smaller, but larger than labor supply alone

Bunching at kink points

Assume that your marginal tax rates are 10% up to 50K, 20% up to 100K and 90% for every dollar over \$100K.

Where would you expect there to be a lot of people earning their income?

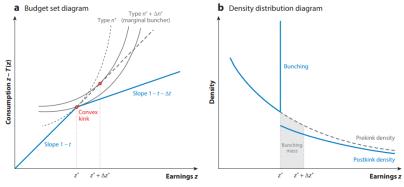
 \Rightarrow Bunching at exactly \$100,000

What are some reasons we might not see any bunching?

- Difficult to perfectly choose hours/earnings and earnings/hours
- Effective after-tax wage still high enough to work beyond kink point

Empirical Estimation: Bunching at Kinks & Notches

Kink estimation (discontinuities in marginal tax rate)

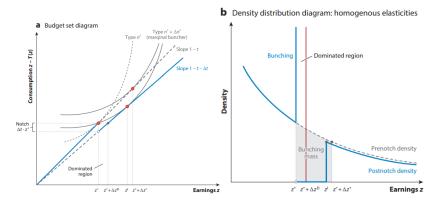

- ▶ Marginal tax rate changes create non-linear budget constraints
- ► A group of marginal workers optimize at the "kink," but would work more under the counterfactual linear budget constraint
- ► The implied reduction in taxable income by these marginal workers is used to calculate an elasticity

Notch estimation (discontinuities in average tax rate)

- Suppose the tax liability jumps at some income threshold, which creates a discontinuity in the average tax rate
- ► Creates region where reducing earnings raises consumption and leisure, then a region where preferences take over
- Elasticity harder to measure because level change does not map to derivative in the elasticity formula

Estimate a counterfactul earnings density (usually assume "smoothness" without kink/notch) to use these methods

Bunching at a Kink: Graph


From Kleven (2016) "Bunching" at a kink point

If kink is small, the local "compensated" tax elasticity of taxable earnings is

$$\varepsilon = -\frac{\Delta z^*/z^*}{\Delta t/(1-t)}$$

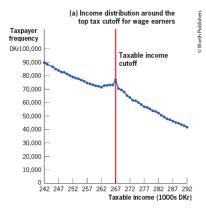
Technical note: Actual tax rate does not change, so there are no "income effects" making this the compensated elasticity (see Saez (2010) for details and exceptions)

Bunching at a Notch: Graph

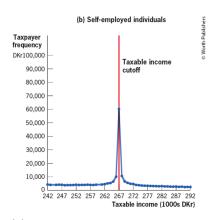
From Kleven (2016) "Bunching" at a notch points. Δz^D is area for which reducing earnings increases consumption and leisure.

Approximate elasticity with upper bound (see Kleven & Waseem (2013)):

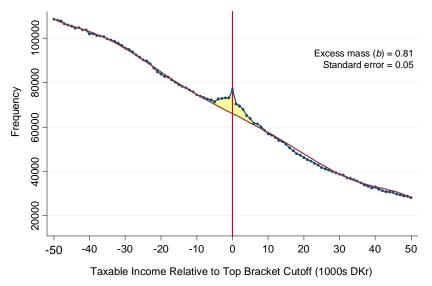
$$e_R pprox rac{(\Delta z^*/z^*)^2}{\Delta t/(1-t)}$$

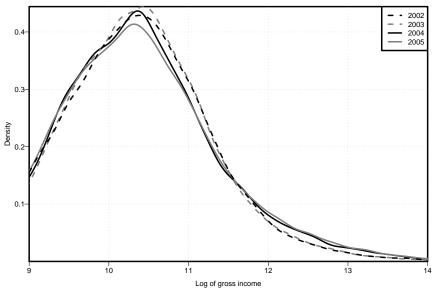

Limitations to bunching estimation

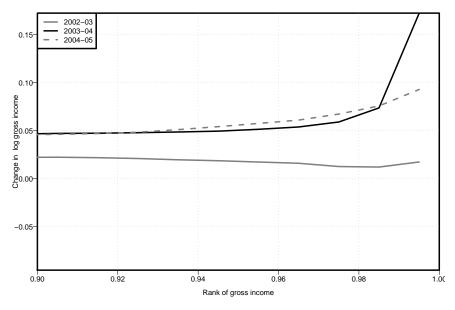
- ► Requires "smoothness" in absence of the discontinuity, so discontinuities in wage settings/hours worked can create issues
- Are estimates from one part of the income distribution externally valid? Need a model to map to rest of distribution
- ► Highly salient tax discontinuities get bigger bunches, underinformed taxpayers may underoptimize
- ► It is costly to adjust earnings, so kinks/notches discontinuities with smaller changes may underestimate elasticity

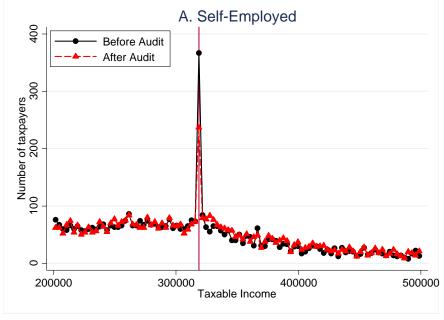

Behavioral responses - examples

- ► "Bunching" of taxpayers in place where marginal tax rates change (Chetty et al, Quarterly Journal of Economics, 2011).
- ▶ Introduction of the flat tax in Poland in 2004 (Kopczuk, 2013): a tax reduction at the top of the distribution for people with business incomes and "suddenly" the rich got richer?
- Importance of tax evasion (Kleven et al. "Unwilling or Unable to Cheat? Evidence from a Tax Audit Experiment in Denmark," Econometrica, 2011)


Bunching at the cutoff


(a) Y-axis is # of individuals at each earning level


(b) Response could be changes in tax reporting


Earnings around the kink in the tax schedule — Denmark

Distribution of gross income inflation/GDP adjusted (business owners)

Change in reported income 2002-05 by location in the full income distribution; tax reduction took place mostly in the top 1%

Would you evade?

- ► How can someone avoid paying \$100 in tax?
- ► Imagine you received \$300 in cash for a side job. If you report, your tax liability goes up \$100. Do you?
- ▶ If you donate \$300, you can deduct \$100 from tax liability
- Only donations over \$250 require a receipt
- ► What would you do?
 - ▶ Just pay the \$100
 - ▶ Donate \$300 and deduct \$100
 - Say you donated \$300 and deduct \$100
 - Say you donated \$150 to two organizations and deduct \$100
- ➤ You start renting your basement as an Airbnb, but rent infrequently. Can you deduct mortgage/utility costs?
- ► Turns out there are a lot of holes in the tax code even more for the wealthy

Tax gap

Tax gap: the difference between the tax that taxpayers should pay and what they actually pay on a timely basis.

The Tax Gap in 2022 (according to the IRS, numbers rarely updated): \$696B or 15% of overall tax liability.

These numbers do not account for enforcement and late payments which were estimated to reduce the gross tax gap by 90 billion to 606B (13.1% noncompliance)

Sources of tax gap: nonfiling, underreporting, underpayment. Underreporting accounts for 80% of the tax gap.

Tax evasion in the U.S.

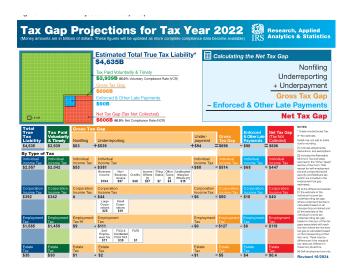


Figure: Source: https://www.irs.gov/pub/irs-pdf/p5869.pdf

The cost of tax evasion

Why is tax evasion bad? Is it?

- ► Tax evasion reduces revenue and requires adjusting other tax rates to make up revenue.
- One source of the social cost of tax evasion: excess burden due to higher taxes.
- Another source of cost: extra risk undertaken by tax evaders.
 - Worse off relative to everyone who pays same expected tax liability without taking risk
 - But, maybe we don't care about welfare of cheaters?
 - But what about people who make mistakes?
- Horizontal inequity: not everybody cheats.

Tax evasion

Assumptions: tax rate of t, probability of getting caught p, penalty of f, income of y. A risk neutral taxpayer wants to maximize

$$(1-p)\underbrace{[y-t(y-E)]}_{\text{evasion income}} + p\underbrace{[(1-t)y-fE]}_{\text{penalized income}}$$

where E is evasion.

Equivalently, the expected after-tax/penalty resources are

$$(1-t)y + [t(1-p)-pf]E$$

For what values t(1-p)-pf does raising E raise taxable income? For t(1-p)-pf>0.

Income tax audit rate is $p \approx 0.01$. If marginal tax rate, t = 0.35, a penalty of f = \$34.65 per dollar cheated discourages evasion.

Similar logic if a person is risk averse: if the evasion lottery pays on average, then cheat a little bit... (as a treat)

Improving this framework

- ► The true audit probability is much bigger than 0.01. Why?
- ► Cross-referencing of wages and salaries with employer's reports means $p \approx 1$ for most taxpayers
 - Underreporting varies by the type of income: very low ($\approx 1\%$) for wages/salaries, closer to 30% for business income
 - Non-compliance generally increases with more options to withhold and more information sources needed to verify income
 - most effective ways of reducing non-compliance involve more third party reporting matched to individual reports
- ▶ Does $\uparrow E$ attract more attention, $\uparrow p$: "petty" cheating underreporting by a few bucks likely undetected.
- Perception of fairness in the tax code has been suggested as an important determinant of compliance

Tax evasion in the U.S.

TY 2008–2010 (Annual Average), TY 2011–2013 (Annual Average), TY 2014–2016 (Annual Average), TY 2017–2019 (Annual Average), TY 2020, TY 2021 and TY 2022

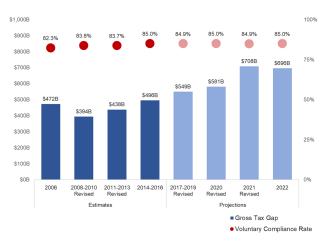


Figure: Source: https://www.irs.gov/pub/irs-pdf/p5869.pdf

Tax evasion in Denmark

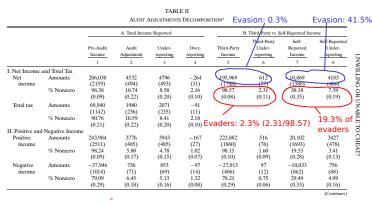


Figure: Source: Kleven et al., Econometrica, May 2011

66

Tax evasion in Denmark (Kleven et al, 2011)

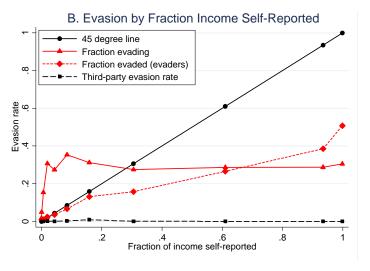


Figure: Source: Kleven et al., Econometrica, May 2011

Policy response

What should the government do to increase compliance?

- High penalties could deter cheating if detection is unlikely.
- "Optimal audit" strategies impractical with bounded penalties and costly audits:
 - Increase detection by using third-party reporting, P2P data, and taxpayer engagement.
 - Leverage network effects.
 - ▶ Improve public perception of the government and tax code.
- High detection rates don't always boost compliance; audits are often negotiations.
- Some noncompliance might be acceptable due to cost, redistributive effects, and limiting government growth.

Complexity of the Tax Code

- Economic Costs:
 - Direct compliance: time spent on tax returns and info gathering
 - More avoidance opportunities
 - Unintentional errors: e.g., EITC claim mistakes from misinterpreting a "qualifying" child
- ► Policy Implications:
 - ▶ Penalties may not effectively address unintentional errors
 - Enhance compliance via education, customer service, and tax professionals
 - ▶ This approach has been the US policy for 15 years
 - Downside: Accounting firms (e.g., H&R Block, TurboTax)
 may exploit the system

Special treatment and rates

- ► Lower rate for capital gains and dividends (0%, 15% or 20%, depending on income level)
- ► An additional net investment income tax (3.8%) for taxpayers above \$250,000.
- ➤ 20% of business income reported on individual income tax returns (so called "pass-through" businesses sole proprietors, S corporations, partnerships) may be deducted for some (many...) businesses as of 2018
- Reorganizing your earnings from wages to pass-through business income can be a way to pay less tax.
- ► And that's before we've touched illegal ways to pay less tax!

The Alternative Minimum Tax and Claimants

- ► AMT introduced in 1969
- Disallows most deductions, adds back some income
- Pay the higher of the regular or the AMT tax liability
- Basic structure:

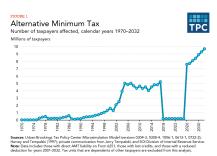


Figure: Skyrocket unlikely after One Big Beautiful Bill (Source: Tax Policy Center.)

Status	Exemption	Phase-out
Unmarried	\$88,100	\$626,350
Joint	\$137,000	\$1,252,700
Separately	\$68,650	\$626,350

Table: AMT Exemption Amounts and Phase-out Thresholds (2025)

Tax Audits: Revenue Maximization and Disparate Impact

- Imagine an auditor is seeking to maximize tax revenue:
 - Two types of likely tax evaders:
 - ► High-income individuals with resources for legal evasion
 - Low-income individuals without such resources
 - Which group does the auditor target?
 - Targeting the wealthy involves costly legal battles
- Disparate impact of audits:
 - ▶ IRS strategies aimed to minimize non-productive audits
 - Focus on erroneously claimed EITC rates and simpler returns
 - Higher audit rates for some groups, e.g., Black taxpayers audited at 2.9 to 4.7 times rate of others (Elzayn et al. (2023))
 - No evidence of racial animus, but impact remains concerning
 - ▶ Biden EO+Inflation Reduction Act shifted focus to wealthy evaders, but DOGE/Trump cuts reduced audit capabilities

Conclusion

- Responsiveness to taxation determines the costs associated with taxation and is key to setting optimal rates.
- ► Taxable income is a sufficient statistic for the cost of taxation, influenced by various margins beyond labor supply choices.
- Estimation requires (ideally exogenous) variation in rates, with non-linearities in budget constraints (kinks & notches) useful for estimating "local" tax elasticities.
- ➤ Tax evasion/fraud can exacerbate the social cost of taxation and is illegal; the government can mitigate this by increasing audit probability or penalties.
- ▶ Additional levers available to further reduce evasion.