Social Insurance: Expected Utility and Insurance

Wojciech Kopczuk, adapted by Kyle Coombs

Vassar College

November 4, 2025

Bungee jumping and travel insurance

- ► Imagine a travel insurance company wants to provide people with coverage in the event they get hurt
- So they offer insurance contracts: clients pay a large sum of money and cover the cost of any major trip interrupting/ending events
- You happen to be on your honeymoon in New Zealand and drive by a bungee jumping bridge
- You have purchased said travel insurance?
- Do you jump?
- ► I did.

Learning Goals

- ► Understand the role of insurance
- Define moral hazard and adverse selection problems
- Isolate reasons government is involved in different social insurance markets
- Identify potential moral hazard and adverse selection in social insurance programs/markets
- Characterize trade-offs in optimal insurance provision

Insurance and its jargon

What is insurance?

- Insurance is a promise to make some payment in case of a particular event, in exchange for a payment, called a premium.
- Insurance premiums: Money that is paid to an insurer so that an individual will be insured against adverse events.
- Insurance provides consumption smoothing
 - Auto insurance pays when a car is totaled (huge loss in income)
 - Health insurance pays when after expensive health costs (indirectly by paying for procedures)

Jargon

- ▶ Payout: the amount of money you receive after event
- ▶ **Premium**: the amount of money you pay for the insurance

Insurance in the Economy

Private-Sector Insurance: health care is 20% of the economy

- ▶ Health-insurance is a huge component of health care markets
- Non-health insurance: life insurance, auto insurance, home insurance, pet insurance, renters insurance, etc.

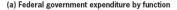
Government social insurance:

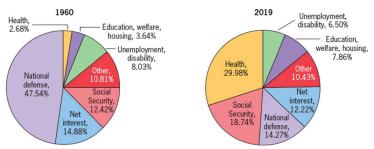
- participation compulsory, benefits not means-tested
- benefits depend on past contributions and begin with some identifiable event (e.g., unemployment, illness, retirement)

Ways governments intervene in insurance markets:

- Direct provision of insurance
- Mandatory participation
- Regulations + subsidies

Insurance is a Large Part of Government Spending





Federal government is "an insurance company with an army" (Source: Gruber, *Public Finance and Public Policy*)

- Social Security (retirement and disability)
- Medicare (and Medicaid, though means-tested), Veteran's Medical Care, ACA subsidies
- Unemployment Insurance, Worker's Compensation

Insurance in the Economy

Private-Sector Insurance: health care is 20% of the economy

- ▶ Health-insurance is a huge component of health care markets
- Non-health insurance: life insurance, auto insurance, home insurance, pet insurance, renters insurance, etc.

Government social insurance:

- participation compulsory, benefits not means-tested
- benefits depend on past contributions and begin with some identifiable event (e.g., unemployment, illness, retirement)

Ways governments intervene in insurance markets:

- Direct provision of insurance
- Mandatory participation
- Regulations + subsidies

Decision Making under Uncertainty

- ► Thus far: decisions without uncertainty (should I consume coffee or donuts, how much do I work)
- Real life is uncertain: choosing jobs, retirement planning, location choices
- Insurance is about uncertainty: different payouts in different states of the world

Probability

Probabilities: the probability that an event occurs is *p*

- Interpretation: how likely the event is to occur
- Examples:
 - Probability a coin flip is heads = 50%
 - ▶ Probability a dice roll is $6 = \frac{1}{6} \approx 16.66\%$

Properties of Probabilities

- ightharpoonup Probability an event does not happen =1-p
- Probabilities need to sum to one

$$\sum_{i} p_i = p_1 + p_2 + \cdots + p_i = 1$$

- Sum over all possible events with event-specific probability p_i
- ightharpoonup Example: with a coin flip: 50 % + 50 % = 100%

Lotteries

Lotteries: a lottery is a set of different monetary payments with a probability of each payment occurring

- ▶ 50% chance of \$1 million and 50% chance of \$0
- ▶ Each lottery is a list of payments $\{x_i\}$ and probabilities $\{p_i\}$
- Previous example:

$$\{x_i\} = \{\underbrace{1M}_{x_1}, \underbrace{0}_{x_2}\} \text{ and } \{p_i\} = \{\underbrace{0.5}_{p_1}, \underbrace{0.5}_{p_2}\}$$

▶ We can represent lots of uncertain choices as lotteries

Preferences over Lotteries: like consumption bundles, individuals can have preferences over lotteries

Expected Value

Expected Value: the mean of a random variable (lottery payoffs):

$$\underbrace{\mathbb{E}(X)}_{\text{Expected value of }X} = \sum_{i} \underbrace{x_{i}}_{\text{Payoff}x_{i}} \times \underbrace{p_{i}}_{\text{Prob. of payoff }x_{i}}$$

▶ Intuition: on average how much are do you get from a lottery? Gaining .1 points w/ 75 % and losing .1 points w/ 25%:

$$.1 \times .75 - .1 \times .25 = .05$$

Gaining 20 points w/ 75 % and losing 20 points w/ 25%:

$$20 \times .75 - 20 \times .25 = 10$$

Expected utility theory and utility functions

Motivation: utility functions let us compare choices of consumption bundles

▶ It would be convenient to be able to assign a utility to a lottery

Expected Utility: the expected utility from a lottery L (any uncertain choice) is

$$\mathbb{E}[U(L)] = \sum_{i} \underbrace{u(x_i)}_{\text{Utility from payoff } x_i} \times \underbrace{p_i}_{\text{Probability of payoff } x_i}$$

▶ Difference from expected value: expected *utility* not payoff Prefer lottery L to L' if $\mathbb{E}[U(L)] > \mathbb{E}[U(L')]$

Question: Expected Utility

Consider an indivdual with a utility function $u(x) = \sqrt{w}$ and a lottery that pays \$16 with 50% chance and \$0 with 50% chance. What is the expected utility and expected utility of this lottery?

Expected Utility:

$$\mathbb{E}[U(L)] = \sqrt{16} \times .5 + \sqrt{0} \times .5 = 2$$

Expected Value:

$$\mathbb{E}[L] = 16 \times .5 + 0 \times .5 = 8$$

Consumption Smoothing

Consumption Smoothing: Spend less in high income years and more in low income years:

► If \$75K/year is better than \$150K/year in one year and zero the next, then consumption smoothing is good

Risk Aversion: Diminishing marginal utility implies risk aversion

Risk averse individuals like consumption smoothing: transferring money from low MU states to high MU states

Example

- ► This year, you earn \$100K.
 - ► Low state (A): Car stolen with probability *p* (lose \$36K)
 - ▶ High state (B): Car not stolen with probability 1 p
- ▶ On average, income¹ is 64p + 100(1 p) = 100 36p
- ▶ Utility is $u(C) = \sqrt{C}$, i.e. diminishing marginal utility
- Expected utility is less than utility of expected income

$$p\sqrt{64} + (1-p)\sqrt{100} \le \sqrt{64p + 100(1-p)}$$
 Check with $p = 0.5$

▶ What if you could spend \$18K to get \$36K if car is stolen:

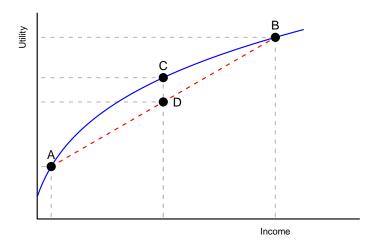
Car not stolen:
$$C_H = 100 - 18 = 82$$

Car stolen: $C_L = 100 - 18 - 36 + 36 = 82$

Expected utility is now equal to utility of expected income!

¹Units are thousands of dollars

Value of insurance with concave utility (diminishing MU)



Does this person prefer a lottery for A-B or C with certainty?

Example continued

- ► A (risk neutral) insurer can guarantee average income The contract: insured pays 36p, receives 36 if robbed
- ▶ The expected cost to the insurer: 36p 36p = 0
- ▶ If p = 0.5, insurer can provide insurance at a premium of \$18K
- ► The "actuarially fair" price!
- Intuition: insured pays premium equal to the average loss
- Insurer breaks even
- Insured trades off risk for consumption by shifting income from high to low state at a price

Would you play the following lotteries?

Lottery 1:

- ▶ You get an extra .1 point on your grade with 75% chance
- ▶ You lose .1 point on your grade with 25% chance

Lottery 2:

- ▶ You get an extra 20 points on your grade with 75% chance
- ▶ You lose 20 points on your grade with 25% chance

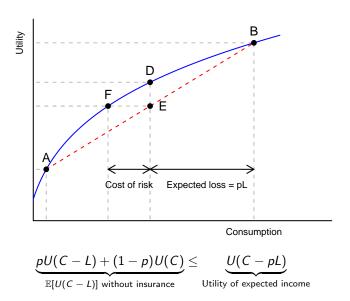
Large vs. Small Risks

- An individual has concave utility U(C) and faces a potential loss L with probability p.
- ▶ What is the expected value of the loss? Expected loss is pL
- ▶ Define αL as the amount the person would pay to avoid the risk ("cost of risk"):

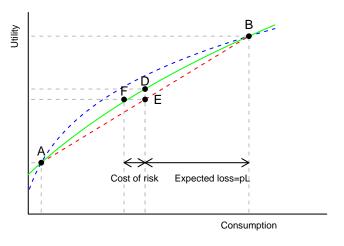
$$U(C - \alpha L) = pU(C - L) + (1 - p)U(C)$$

- $\Rightarrow C \alpha L$ is the **certainty equivalent**.
- ▶ If $\alpha = p$, is the person risk averse? No!
- As $L \to 0$, what happens to α for a risk averse person? $\alpha \to p$
- Large risks are worth insuring; small risks are not.

Value of insurance

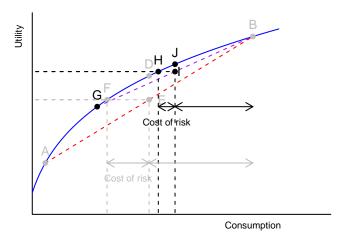


Value of insurance



As risk aversion falls, $\alpha \to p$ for any L, i.e. $F \to E$ on the graph

Value of insurance



For a smaller loss, the cost of risk, and thus certainty equivalent from $F \to E$ to $H \to I$, eventually converging such that H and J are the same point, so $\alpha = p$.

Generalize: Buying insurance

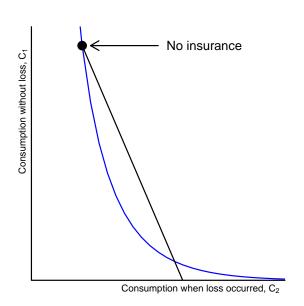
- Before insurance:
 - Consumption without a loss: $C_1 = Y$ (probability 1 p).
 - ▶ Consumption with a loss: $C_2 = Y L$ (prob. p)
- ▶ Insurance with payout: R, premium: qR. If purchased:
 - $ightharpoonup C_1 = Y qR$
 - $ightharpoonup C_2 = Y L qR + R = Y L + (1 q)R$
- ▶ If R = 1, what is the premium? q!
- ▶ Reducing C_1 by q increases C_2 by (1-q)
- ▶ One can "trade C_1 for C_2 " at the relative price of $\frac{1-q}{q}$
- ▶ Budget constraint: Pay $Y C_1$ at price q to get $R = \frac{Y C_1}{q}$:

$$C_2 = Y - L - (1 - q)R \Rightarrow C_2 = Y - L + \frac{1 - q}{q}(Y - C_1)$$

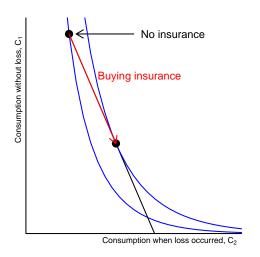
 $\Rightarrow qC_2 + (1 - q)C_1 = Y - qL$

What does that look like? Budget constraint!

Buying insurance



Buying insurance



Wait, trade C_1 for C_2 ? Like an MRS?

- ▶ Recall the marginal rate of substitution!
- ▶ MRS is how much of one good you will give up for another
- Let's look at expected utility with just two states

$$\max_{C_1,C_2}(1-p)\cdot U(C_1)+p\cdot U(C_2)$$

▶ The MRS is the ratio of the marginal utilities or

$$-\frac{p}{1-p}\cdot\frac{MU_2}{MU_1}$$

- ► The MRS determines the rate at which you are willing to trade consumption in one state for another
- ▶ Huh... didn't paying q (out of C_1) get 1 q more of C_2 ?

$$-\frac{q}{1-q} = -\frac{p}{1-p} \cdot \frac{MU_2}{MU_1}$$

Buying insurance

- Y = \$81K, L = \$45K, probability of a loss is p = 0.1 and the price of insurance paying \$1 in case of a loss is q = 0.2.
 - ▶ If you buy insurance of R, $C_1 = 81 0.2R$ and $C_2 = 36 + 0.8R$.
 - The budget constraint is

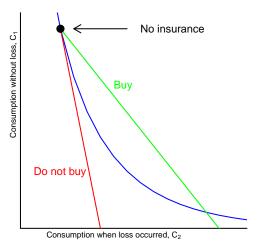
$$0.8C_1 + 0.2C_2 = 81 \cdot 0.8 + 36 \cdot 0.2$$
$$= 72$$

- ▶ $u(C) = \sqrt{C}$, so expected utility: $E[U] = 0.9\sqrt{C_1} + 0.1\sqrt{C_2}$
- ▶ Pick feasible C_1 and C_2 such that:

Odds ratio
$$\underbrace{\frac{p}{1-p} \cdot \frac{\sqrt{C_2}}{\sqrt{C_1}}}_{\text{MRS}} = \underbrace{\frac{.1}{.9} \frac{\sqrt{C_2}}{\sqrt{C_1}}}_{\text{Slope of BC}} = \underbrace{\frac{q}{1-q} = \frac{.2}{.8}}_{\text{Slope of BC}}$$

▶ But what if C_1 and C_2 are not feasible?

Should you buy insurance?



Like utility maximization with two goods, we solve for the optimal C_1 and C_2 as the tangency between the indifference curve and budget constraint.

Solving the Insurance Problem

Assume
$$u(C) = \sqrt{C}$$
, $Y = \$81K$, $p = 0.1$, $q = 0.2$, $L = \$45K$.

Expected utility: $E[U] = 0.9\sqrt{C_1} + 0.1\sqrt{C_2}$

► Compare MRS to slope of budget line at $(C_1^*, C_2^*) = (81, 36)$:

$$MRS = -\frac{p}{1-p} \frac{MU_2}{MU_1} = -\frac{1}{9} \sqrt{\frac{C_1}{C_2}} = -\frac{1}{9} \sqrt{\frac{81}{36}} = -\frac{1}{6}$$

$$\text{Budget slope} = -\frac{q}{1-q} = -\frac{0.2}{0.8} = -\frac{1}{4}$$

- If MRS > slope ⇒ do not buy; if MRS < slope ⇒ buy!</p>
- ▶ Does this person buy insurance? No! $-\frac{1}{6} > -\frac{1}{4}$
- ▶ What if L = \$72K? Yes! $-\frac{1}{3} < -\frac{1}{4}$
- Intuition: larger potential losses raise MU in bad state.

Solving for Optimal Coverage

$$\max_{C_1,C_2} (1-p)\sqrt{C_1} + p\sqrt{C_2}$$

s.t. $(1-q)C_1 + qC_2 = Y - qL$

Solve for C_1 and C_2 , if $R = \frac{Y - C_1}{q} \le 0$, no insurance!

Alternative: Substitute and max R

Substitute
$$C_1 = Y - qR$$
, $C_2 = Y - L + (1 - q)R$:

$$\max_{R} \ 0.9\sqrt{Y - qR} + 0.1\sqrt{Y - L + (1 - q)R}$$

Actuarially fair insurance

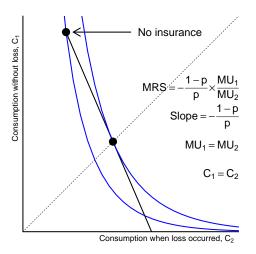
- ▶ If insurers break even, price is "actuarially fair"
- to break even, we have to have

$$q \cdot R - p \cdot R = 0$$

hence actuarially fair insurance requires q = p

under actuarially fair insurance, consumers will insure fully and will equalize marginal utilities across states. Why?

Buying insurance



If actuarially fair, p=q, so the slope of the budget constraint is the odds ratio, $\frac{q}{1-q}=\frac{p}{1-p}$, so $MU_1=MU_2$ meaning one fully insures.

Summary

- Insurance smooths consumption by transferring income from bad states (high MU) to good states (low MU).
- Solving for optimal insurance is the same as utility maximization with two goods – you just need to properly define the budget constraint
- With actuarially fair insurance, risk-averse consumers fully insure.
- Most insurance is not actuarially fair, but likely worth buying some coverage
- Insurance is more valuable for more risk-averse individuals and larger risks (e.g., smaller vs. larger changes in course points).
- Question: which aspects (if any) justify government intervention in insurance markets?