Social Insurance: Moral Hazard and Adverse Selection

Wojciech Kopczuk, adapted by Kyle Coombs

Vassar College

November 5, 2025

Application: Why take a class NRO?

- Vassar allows students to take a class *NRO* (Non-Recorded Option), meaning the grade does not affect their GPA.¹
- In effect, NRO grading provides insurance against a bad semester.
- It can reduce students' academic risk—especially when taking challenging or unfamiliar subjects.
- Normatively, we might view this as a way to promote exploration and reduce stress.
- Positively, however, it can change behavior and incentives in unexpected ways.

 $^{^1}$ To be clear: I have no idea if anyone here has done this, and please don't tell me!

How might NRO affect grades across campus?

- Imagine the college introduces NRO for the first time.
- A dean notices that *average letter grades* have gone up.
- They conclude: "Students must be learning more—and NRO must be helping!"
- But before we celebrate, we should ask:
- Is there another possible explanation?

Adverse Selection and NRC

- Suppose two equally strong students face different workloads:
 - You are writing two theses and taking an upper-level elective outside your major.
 - Your friend is taking that same elective plus several intro-level MOI courses.
- Who is more likely to take the elective NRO?
- Even if ability is the same, students under more stress or risk may opt for NRO.
- This creates *adverse selection*: lower expected grades are hidden from official GPAs.
- So when we observe higher average grades, they may reflect *who opts out*—not necessarily *what students learned*.

Learning Goals

- Understand the role of insurance
- Define moral hazard and adverse selection problems
- Isolate reasons government is involved in different social insurance markets
- Identify potential moral hazard and adverse selection in social insurance programs/markets
- Characterize trade-offs in optimal insurance provision

Insurance

• Resources may be variable in the presence of uncertainty...

Insurance

- Resources may be variable in the presence of uncertainty...
- ...however individuals want to "smooth" their consumption and may not be able to do so by themselves

Insurance

- Resources may be variable in the presence of uncertainty...
- ...however individuals want to "smooth" their consumption and may not be able to do so by themselves
- Insurance lets people pay a premium to receive a payout in the event of a loss and smooth consumption
- Many people pay in and only a few receive payouts, so on net an insurer makes at least zero profit
- "Actuarially fair insurance" charges a premium equal to the expected payout, so the insurer makes zero profit
- "Actuarially fair" premium rarely charged. Today is about why.

Problems with providing insurance

Asymmetric information: One party knows more about the situation than the other. In insurance markets, buyers know more about themselves than insurers do, which creates problems:

- Adverse selection: People most likely to need insurance are most likely to buy it.
- Moral hazard: Insurance can make people take more risks.

These problems mean insurance might not work well—or may not exist at all.

Example: Adverse Selection

- Suppose a private firm offers unemployment insurance paying \$1,000 upon job loss.
- There are two equally sized groups:
 - Overachievers: job loss probability $p^O = 0.1$
 - **Shirkers:** job loss probability $p^S = 0.5$
- The firm cannot tell who is who, so it assumes each person has a 50% chance of being either type.

- Case 1: Full information ⇒ actuarially fair prices:
 - Overachievers: $p^O \cdot \$1000 = 0.1 \cdot \$1000 = \$100$
 - Shirkers: $p^S \cdot \$1000 = 0.5 \cdot \$1000 = \$500$

- Case 1: Full information ⇒ actuarially fair prices:
 - Overachievers: $p^O \cdot \$1000 = 0.1 \cdot \$1000 = \$100$
 - Shirkers: $p^S \cdot \$1000 = 0.5 \cdot \$1000 = \$500$
- Case 2: Asymmetric information ⇒ everyone charged the same premium.

- Case 1: Full information ⇒ actuarially fair prices:
 - Overachievers: $p^O \cdot \$1000 = 0.1 \cdot \$1000 = \$100$
 - Shirkers: $p^S \cdot \$1000 = 0.5 \cdot \$1000 = \$500$
- Case 2: Asymmetric information ⇒ everyone charged the same premium.
 - Expected payout: $(0.5 \cdot 0.1 + 0.5 \cdot 0.5) \cdot \$1000 = \$300$

- Case 1: Full information ⇒ actuarially fair prices:
 - Overachievers: $p^O \cdot \$1000 = 0.1 \cdot \$1000 = \$100$
 - Shirkers: $p^S \cdot \$1000 = 0.5 \cdot \$1000 = \$500$
- Case 2: Asymmetric information ⇒ everyone charged the same premium.
 - Expected payout: $(0.5 \cdot 0.1 + 0.5 \cdot 0.5) \cdot \$1000 = \$300$
 - Premium = $\$300 \Rightarrow$ too expensive for O, cheap for S

- Case 1: Full information ⇒ actuarially fair prices:
 - Overachievers: $p^O \cdot \$1000 = 0.1 \cdot \$1000 = \$100$
 - Shirkers: $p^S \cdot \$1000 = 0.5 \cdot \$1000 = \$500$
- Case 2: Asymmetric information ⇒ everyone charged the same premium.
 - Expected payout: $(0.5 \cdot 0.1 + 0.5 \cdot 0.5) \cdot \$1000 = \$300$
 - Premium = $$300 \Rightarrow$ too expensive for O, cheap for S
 - If overachievers drop out, the firm learns all buyers are shirkers:

- Case 1: Full information ⇒ actuarially fair prices:
 - Overachievers: $p^O \cdot \$1000 = 0.1 \cdot \$1000 = \$100$
 - Shirkers: $p^S \cdot \$1000 = 0.5 \cdot \$1000 = \$500$
- Case 2: Asymmetric information ⇒ everyone charged the same premium.
 - Expected payout: $(0.5 \cdot 0.1 + 0.5 \cdot 0.5) \cdot \$1000 = \$300$
 - Premium = $$300 \Rightarrow$ too expensive for O, cheap for S
 - If overachievers drop out, the firm learns all buyers are shirkers:
 - New expected payout: $0.5 \cdot \$1000 = \$500 \Rightarrow$ premium rises to \$500

- Case 1: Full information ⇒ actuarially fair prices:
 - Overachievers: $p^O \cdot \$1000 = 0.1 \cdot \$1000 = \$100$
 - Shirkers: $p^S \cdot \$1000 = 0.5 \cdot \$1000 = \$500$
- Case 2: Asymmetric information ⇒ everyone charged the same premium.
 - Expected payout: $(0.5 \cdot 0.1 + 0.5 \cdot 0.5) \cdot \$1000 = \$300$
 - Premium = $$300 \Rightarrow$ too expensive for O, cheap for S
 - If overachievers drop out, the firm learns all buyers are shirkers:
 - New expected payout: $0.5 \cdot \$1000 = \$500 \Rightarrow$ premium rises to \$500
- Market unravels: insurance becomes inefficient or disappears entirely.

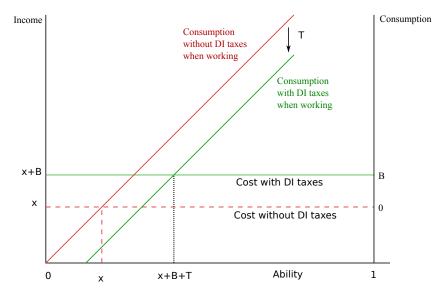
- Now suppose there is only one type of worker.
- Probability of job loss depends on effort e: p(e) = 0.1 with p'(e) < 0
- Job loss costs \$1,000, so the actuarially fair premium is \$100.

- Now suppose there is only one type of worker.
- Probability of job loss depends on effort e: p(e) = 0.1 with p'(e) < 0
- Job loss costs \$1,000, so the actuarially fair premium is \$100.
- With insurance, workers exert less effort $\Rightarrow p(e') = 0.2$

- Now suppose there is only one type of worker.
- Probability of job loss depends on effort e: p(e) = 0.1 with p'(e) < 0
- Job loss costs \$1,000, so the actuarially fair premium is \$100.
- With insurance, workers exert less effort $\Rightarrow p(e') = 0.2$
- Insurer now pays \$200 on average but collects only \$100.

- Now suppose there is only one type of worker.
- Probability of job loss depends on effort e: p(e) = 0.1 with p'(e) < 0
- Job loss costs \$1,000, so the actuarially fair premium is \$100.
- With insurance, workers exert less effort $\Rightarrow p(e') = 0.2$
- Insurer now pays \$200 on average but collects only \$100.
- Result: fair-price insurance is no longer sustainable.

Everyday Examples of Moral Hazard


Everyday Examples of Moral Hazard

- Not searching for work while receiving unemployment benefits
- Building in flood- or earthquake-prone areas
- Exaggerating injury or disability
- Taking fewer workplace safety precautions
- Overusing medical care
- Seasonal layoffs

- Imagine individuals have ability a and must pay cost x to work.
- Workers earn a; non-workers earn 0 (before taxes and benefits).
- Workers pay tax T, non-workers receive benefit B.
- Consumption:

$$C_{work} = a - T - x$$
 vs. $C_{no\ work} = B$

Slight abuse of y-axes. Income $\neq x$ or x+B when not working. It is B or 0. If it helps, consider x a non-pecuniary cost of working.

- Imagine individuals have ability a and must pay cost x to work.
- Workers earn a; non-workers earn 0 (before taxes and benefits).
- Workers pay tax T, non-workers receive benefit B.
- Consumption:

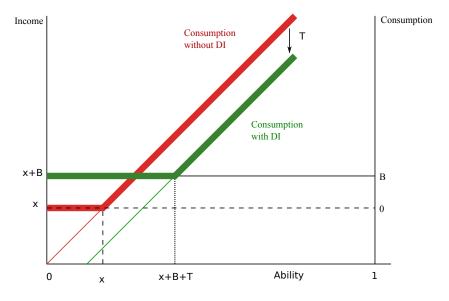
$$C_{work} = a - T - x$$
 vs. $C_{no\ work} = B$

• Those with a > B + T + x work; others do not.

- Imagine individuals have ability a and must pay cost x to work.
- Workers earn a; non-workers earn 0 (before taxes and benefits).
- Workers pay tax T, non-workers receive benefit B.
- Consumption:

$$C_{work} = a - T - x$$
 vs. $C_{no\ work} = B$

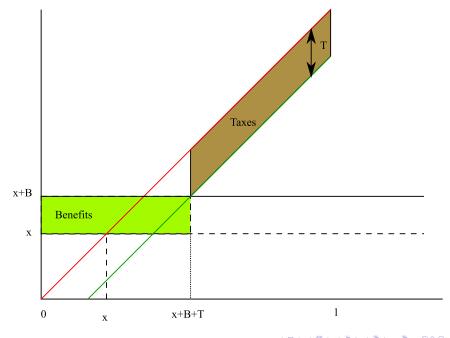
- Those with a > B + T + x work; others do not.
- Without DI, those with a > x work.

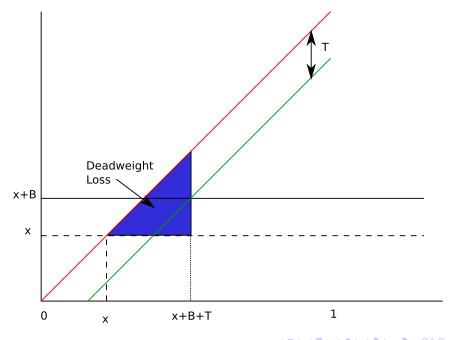


- Imagine individuals have ability a and must pay cost x to work.
- Workers earn a; non-workers earn 0 (before taxes and benefits).
- Workers pay tax T, non-workers receive benefit B.
- Consumption:

$$C_{work} = a - T - x$$
 vs. $C_{no\ work} = B$

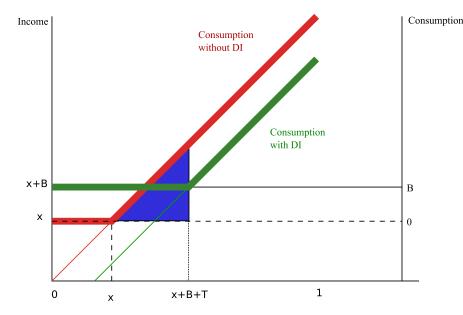
- Those with a > B + T + x work; others do not.
- Without DI, those with a > x work.
- Ability is private ⇒ no adverse selection here, just moral hazard.





Slight abuse of y-axes. Income $\neq x$ or x+B when not working. It is B or 0. If it helps, consider x a non-pecuniary cost of working.

Implications of the Model


- DI induces those with $x \le a < B + T + x$ not to work.
- Individuals who could work instead collect benefits → moral hazard cost.

Implications of the Model

- DI induces those with x < a < B + T + x not to work.
- Individuals who could work instead collect benefits → moral hazard cost.
- Raising B and T smooths consumption but reduces employment.
- Without DI: high inequality (some consume a x, others 0)

Implications of the Model

- DI induces those with x < a < B + T + x not to work.
- Individuals who could work instead collect benefits → moral hazard cost.
- Raising B and T smooths consumption but reduces employment.
- Without DI: high inequality (some consume a x, others 0)
- With DI: more equality, lower mean consumption.
- Insurance trades equality for efficiency.

 Under moral hazard, insurance markets may fail even if everyone is identical.

- Under moral hazard, insurance markets may fail even if everyone is identical.
- The government has no inherent advantage in solving moral hazard.

- Under moral hazard, insurance markets may fail even if everyone is identical.
- The government has no inherent advantage in solving moral hazard.
- Yet policy can sometimes help—through incentives and enforcement:
 - Speeding tickets, anti-fraud checks, work-search requirements

- Under moral hazard, insurance markets may fail even if everyone is identical.
- The government has no inherent advantage in solving moral hazard.
- Yet policy can sometimes help—through incentives and enforcement:
 - Speeding tickets, anti-fraud checks, work-search requirements
- The key tradeoff in social insurance:
 - ullet More coverage \Rightarrow better consumption smoothing
 - But also weaker incentives and higher costs from moral hazard

Government's role

Between moral hazard and adverse selection, gov't can more easily help with adverse selection. Why?

Government's advantage

Government's role

Between moral hazard and adverse selection, gov't can more easily help with adverse selection. Why?

 Government's advantage: making everyone participate (by public provision or mandating)

Government's role

Between moral hazard and adverse selection, gov't can more easily help with adverse selection. Why?

- Government's advantage: making everyone participate (by public provision or mandating)
- Insurance can be provided even though without intervention it would not be offered
- However, individuals who would opt out in the private market are hurt if they are charged average cost
- Other considerations:
 - externalities (no-fault insurance, vaccinations),
 - administrative costs,
 - redistribution,
 - paternalism

Government provision of insurance may "crowd-out" other insurance:

Government provision of insurance may "crowd-out" other insurance:

- Private insurance
- Firm-provided severance pay
- Other means of consumption smoothing:

Government provision of insurance may "crowd-out" other insurance:

- Private insurance
- Firm-provided severance pay
- Other means of consumption smoothing:
 - Saving for a "rainy day"
 - Informal Risk sharing e.g., within families, crop-sharing in a village, in-kind or cash gifts (Coombs 2025,)

Government provision of insurance may "crowd-out" other insurance:

- Private insurance
- Firm-provided severance pay
- Other means of consumption smoothing:
 - Saving for a "rainy day"
 - Informal Risk sharing e.g., within families, crop-sharing in a village, in-kind or cash gifts (Coombs 2025,)

Ultimately, the public-private crowd-out elasticity of a given program is an empirical question (for another day)

Conclusion

- Uncertainty makes it harder to smooth consumption, which is preferred among those with diminishing marginal utility
- Market failure due to asymmetric information can lead to actuarially unfair pricing of private insurance:
 - Adverse selection occurs before insurance provided: people know more about their risk than providers and selectively insure
 - Moral hazard occurs after insurance provided: people change behavior after insured
- The government can help solve these problems, but it does not always have a clear advantage
- Social insurance one solution, but it is not without costs and works better on adverse selection than moral hazard

